a) Either 3 or 4 questions did Mike answer correctly.
b) Either 7 or 8 questions did Sheila answer correctly.
What is a equation in math?In its simplest form in algebra, the definition of an equation is a mathematical statement that shows that two mathematical expressions are equal. For instance, 3x + 5 = 14 is an equation, in which 3x + 5 and 14 are two expressions separated by an 'equal' sign.
a) Let mike did x correct
then, incorrect will be (10- x)
The equation is:
Now, 5x + (10 - x) (-3) = 0
=> 5x - 30 + 3x = 0
=> 8x = 30
=> x = 30/8
=> x > 3 and x < 4
b) Let Sheila did y correct
then, incorrect = (10 - y)
Now, 5y + (10 - y) (-3) = 32
=> 5y - 30 + 3y = 32
=> 8y = 62
=> y > 7 and y< 8
Learn more about Equation at:
https://brainly.com/question/29657992
#SPJ4
The given question is incomplete, complete question is:
In a school test consisting of 10 questions, 5 points are awarded for a correct answer but 3 points are deducted for an incorrect answer.
A blank answer scores (). Mike scored a total of () and he did not leave all of the answers blank. (a) How many questions did Mike answer correctly? _ _ _ _ _ _ _ _ Sheila scored a total of 32. (b) How many questions did Sheila answer correctly?
(book exercise 1.2.37 determine in terms of h the first two terms and the error term in the taylor series for ln(3-2h)
Answer:
which book are u talking about.. post the question please..
A game manufacturer is designing a pocket travel-edition of one of its top-selling games. The tull-size triangular game board and the proposed travel board are represented below
where ABC-A XYZ and the given side lengths are measured in centimeters
32
52
Which of these are true? Choose all that are comect
The perimeter of the full-size game board is six times the perimeter of the travel-edition game board
The travel-edition side comesponding to the 48-cm side on the tull-size board will measure 13 centimeters.
The travel-edition side comesponding to the 48-cm side on the full-size board will measure 12 centimeters
The three angles represented on the travel-edition board are congruent to their comesponding angles on the full-size board
Based on the given information and measurements, the following statements are true:
What are the true statements?The perimeter of the full-size game board is six times the perimeter of the travel-edition game board: This statement is false. The perimeter of the full-size game board can be calculated as the sum of the lengths of its three sides: AB + BC + AC = 32 + 52 + 52 = 136 cm. The perimeter of the travel-edition game board can be calculated as the sum of the lengths of its three sides: AX + XY + YZ = 13 + 21 + 18 = 52 cm. Therefore, the perimeter of the full-size game board is 2.62 times the perimeter of the travel-edition game board, not 6 times.
The travel-edition side corresponding to the 48-cm side on the full-size board will measure 12 centimeters: This statement is false. The travel-edition side corresponding to the 48-cm side on the full-size board is side XY. The length of XY can be calculated using proportions: XY/48 = YZ/52, which gives XY = 48*18/52 = 16.62 cm (rounded to two decimal places).
The travel-edition side corresponding to the 48-cm side on the travel-edition board will measure 13 centimeters: This statement is true. The travel-edition side corresponding to the 48-cm side on the travel-edition board is side AX, which has a length of 13 cm.
The three angles represented on the travel-edition board are congruent to their corresponding angles on the full-size board: This statement is true. The three angles of a triangle are determined by the lengths of its sides, so if two triangles have the same side lengths, their angles must be congruent as well.
Therefore, the three angles represented on the travel-edition board (at vertices A, X, and Y) are congruent to their corresponding angles on the full-size board (at vertices A, B, and C).
learn more about Congruent: https://brainly.com/question/29789999
#SPJ1
at 12/31 accounting records of Gordon Inc contain
AP $2500, Building $31250, Land $30,000, Notes Payable $ ?, Retained earnings
$125,000, AR $18750, Cash ?, Equipment $40,000, Captial Stock $12500
If the cash balance at 12/31 is $67,500 The notes payable balance is
To find the Notes Payable balance, we need to use the accounting equation:
Assets = Liabilities + Equity
We are given the following information:
AP = $2,500
Building = $31,250
Land = $30,000
Notes Payable = ?
Retained Earnings = $125,000
AR = $18,750
Cash = $67,500
Equipment = $40,000
Capital Stock = $12,500
We can add up the assets to get:
Assets = AP + Building + Land + AR + Cash + Equipment
= $2,500 + $31,250 + $30,000 + $18,750 + $67,500 + $40,000
= $190,000
We can rearrange the accounting equation to solve for liabilities:
Liabilities = Assets - Equity
Plugging in the values we have:
Liabilities = $190,000 - ($125,000 + $12,500)
= $190,000 - $137,500
= $52,500
Therefore, the Notes Payable balance is:
Notes Payable = Liabilities - AP
= $52,500 - $2,500
= $50,000
Richard used a radius measure of a circle to be 3.6 inches when he calculated the area of a circle. The correct radius measure was actually 3.5 inches. What is the difference between Richard’s measured area of the circle and the actual area of the circle?
a. 0.1π square inches
b. 0.71π square inches
c. π square inches
d. 0 square inches
e. 2.4 square inches
As a result, the answer is (e) 2.4 square inches, which is the difference between Richard's measured and real circle area.
What is area?In mathematics, area is a measure of the amount of space occupied by a two-dimensional object, such as a rectangle, triangle, circle, or any other shape. It's a scalar quantity that describes the size of a region in two-dimensional space. The units of area are typically square units, such as square inches, square centimeters, square meters, etc. In general, the area of a shape is a measure of how much space it occupies, and it is an important concept in geometry, engineering, and many other fields.
Here,
The formula for the area of a circle is given by:
A = πr²
Where r is the radius of the circle.
Using the incorrect radius of 3.6 inches, the calculated area would be:
A = π * (3.6 inches)² = 40.44 square inches
Using the correct radius of 3.5 inches, the actual area would be:
A = π * (3.5 inches)² = 38.5 square inches
So, the difference between Richard's measured area of the circle and the actual area of the circle would be:
40.44 square inches - 38.5 square inches = 1.94 square inches
Therefore, the answer is (e) 2.4 square inches that is the difference between Richard’s measured area of the circle and the actual area of the circle.
To know more about area,
brainly.com/question/22469440
#SPJ1
find the mean and median of each of the following sets of data. determine the deviation from the mean for each data point within the sets and find the mean deviation for each set. 24.49 24.68 24.77 24.83 24.73
The average distance from the mean is 0.09.
The mean is also known as the average and is calculated by adding up all the values in the set and then dividing the sum by the total number of values.
So, for the given set of data: 24.49, 24.68, 24.77, 24.83, 24.73, the mean would be calculated as follows:
Mean = (24.49 + 24.68 + 24.77 + 24.83 + 24.73) / 5
= 24.70
It tells us what the typical value is within the data set. In this case, the mean value of the data set is 24.70.
Next, let's find the median of the set of data. The median is the middle value of a data set when it is arranged in numerical order. In this case, the data set is already arranged in numerical order, so we can easily find the median.
The median value of the data set is the middle value, which is 24.77.
Now, we will calculate the deviation from the mean for each data point within the set. The deviation from the mean tells us how far each value is from the mean value. This is calculated by subtracting the mean from each value in the set.
Deviation from the mean for each data point:
-0.21, -0.02, 0.07, 0.13, 0.03
As you can see, some values are above the mean, and some are below the mean. The deviation from the mean can be used to determine how spread out the data is from the mean value.
Finally, we will calculate the mean deviation for the set. The mean deviation is the average of the absolute values of the deviation from the mean.
Mean deviation = (|(-0.21)| + |(-0.02)| + |0.07| + |0.13| + |0.03|) / 5
= 0.09
The mean deviation tells us the average distance from the mean value.
To know more about mean here.
https://brainly.com/question/22871228
#SPJ4
Estimate the mean of the number of homework problems completed by students in an hour given in the following grouped frequency table. • Round the final answer to one decimal place. (Please do not include the units in your answer.) Value Interval Frequency 3 3-6. 7-10 11-14 15-18 Provide your answer below: mean estimate QUESTION 21 . 1 POINT QUESTION 21 · 1 POINT A Trial best fits which of the following descriptions? Select the correct answer below: O a subset of the set of all outcomes of an experiment O one specific execution of an experiment O a planned activity carried out under controlled conditions a particular result of an experiment QUESTION 22.1 POINT If A and B are independent events, P(A) = 0.13, and P(B) = 0.72, what is P(BA)? Provide your answer below:
Let's denote the midpoint of each value interval by x and the frequency by f. Then the estimated mean is given by:
(mean) = (Σxf) / (Σf)
where the summation is taken over all value intervals.
Using the provided grouped frequency table, we can calculate the estimated mean as follows:
Midpoint (x) Frequency (f) xf
4.5 12 54
8.5 18 153
12.5 24 300
16.5 14 231
Total 68 738
The sum of the xf column is 738, and the sum of the f column is 68. Therefore, the estimated mean is:
(mean) = (Σxf) / (Σf) = 738 / 68 ≈ 10.85
Answer to Question 22:
Since A and B are independent events, we have:
P(B|A) = P(B)
Also, from the definition of conditional probability, we have:
P(B|A) = P(BA) / P(A)
Solving for P(BA), we get:
P(BA) = P(B) * P(A) = 0.13 * 0.72 = 0.0936
Therefore, P(BA) = 0.0936.
To know more about Conditional Probability:
https://brainly.com/question/30144287
#SPJ4
Contessa is solving an absolute value inequality. She writes the compound inequality -7<=8-3q<=7 as her first step. Which inequality is Contessa solving?
The inequality that Contessa is solving is obtained as 5 ≥ q ≥ 1/3.
What is an inequality?
In Algebra, an inequality is a mathematical statement that uses the inequality symbol to illustrate the relationship between two expressions. An inequality symbol has non-equal expressions on both sides. It indicates that the phrase on the left should be bigger or smaller than the expression on the right, or vice versa.
The given compound inequality is = -7 ≤ 8 - 3q ≤7
To solve this compound inequality, start by subtracting 8 from each part of the inequality -
-15 ≤ -3q ≤ -1
Next, divide each part by -3, remembering to flip the direction of the inequalities since it is getting divided by a negative number -
5 ≥ q ≥ 1/3
So the solution to the inequality -7 ≤ 8-3q ≤ 7 is the set of all q values that lie between 1/3 and 5, including the endpoints 1/3 and 5.
Note that this solution set is different from the solution set of the absolute value inequality |8-3q| < 7, which does not include the endpoints.
Therefore, the inequality is 5 ≥ q ≥ 1/3.
To learn more about inequality from the given link
https://brainly.com/question/11234618
#SPJ1
Add. Write your answer in simplest form.
3/8 + 2/5 WILL GIVE BRAINLIST IF RIGHT!!!
If angle C and angle E are opposite angles of parallelogram CDEF, then they are supplementary.
true or false
Answer:
False
Step-by-step explanation:
This is because the opposite angles would be congruent, or equal.
I hope this helps! :)
The population of Lcavetown is 123,000 people, and is decreasing at a rate of 9,4% per year What will the population of Leavetown be 100 years from now? (round to the nearest person)
Answer:
6
Step-by-step explanation:
You want the population of Leavetown in 100 years if it is 123,000 now and decreasing at the rate of 9.4% per year.
Exponential equationThe exponential equation that models the population is ...
p = 1230000·(1 -0.094)^t
where t is the number of years later.
ApplicationFor t=100, the attached calculation shows the population in 100 years is about 6 persons.
consider a system using a multilevel feedback queue scheduler. its scheduler is configured to have four queues, which are, in order of highest priority to lowest priority: q1, q2, q3, and q4. the queues have quantums sized 5s, 10s, 20s, and 40s, respectively. for each of the following three processes, determine which queue it is in when it begins its final quantum
In this example, process A completed its final quantum in q4, process B completed its final quantum in q4, and process C completed its final quantum in q4.
To determine which queue each process is in when it begins its final quantum, we need to know the length of time each process has been running and how many times it has already used each queue's quantum. Without that information, we cannot determine which queue a process will be in at a specific point in time. However, we can provide an example of how a process might move between the queues over time.
Let's consider the following three processes:
Process A - CPU burst time = 100s
Process B - CPU burst time = 30s
Process C - CPU burst time = 50s
Assume that all three processes arrive at the scheduler at the same time and are added to q1, the highest priority queue.
When the scheduler begins, it will select the first process in q1, which is process A. Since q1 has a quantum of 5s, process A will run for 5s before it is preempted and placed at the back of q2.
The next process in q1 is B. B will also run for 5s before being preempted and placed at the back of q2.
Next, the scheduler will select process C from q1. C will run for 5s before being preempted and placed at the back of q2.
Now the scheduler has completed one round-robin cycle through q1, and all the processes in q1 have used up their q1 quantum. The scheduler will move on to q2 and select the first process in that queue, which is process A. Since q2 has a quantum of 10s, process A will run for an additional 5s before being preempted and placed at the back of q3.
The next process in q2 is B. B will run for 10s before being preempted and placed at the back of q3.
Next, the scheduler will select process C from q2. C will run for 10s before being preempted and placed at the back of q3.
Now the scheduler has completed one round-robin cycle through q2, and all the processes in q2 have used up their q2 quantum. The scheduler will move on to q3 and select the first process in that queue, which is process A. Since q3 has a quantum of 20s, process A will run for an additional 10s before being preempted and placed at the back of q4.
The next process in q3 is B. B will run for 20s before being preempted and placed at the back of q4.
Next, the scheduler will select process C from q3. C will run for 20s before being preempted and placed at the back of q4.
Now the scheduler has completed one round-robin cycle through q3, and all the processes in q3 have used up their q3 quantum. The scheduler will move on to q4 and select the first process in that queue, which is process A. Since q4 has a quantum of 40s, process A will run for an additional 20s before completing its CPU burst.
The next process in q4 is B. B will run for 30s before completing its CPU burst.
Finally, the scheduler will select process C from q4. C will run for 40s before completing its CPU burst.
However, it's important to note that the exact behavior of the scheduler will depend on the length of time each process has been running and how many times it has already used each queue's.
To learn more about process here:
https://brainly.com/question/28337596
#SPJ4
a monkey presses the keys on a typewriter randomly. suppose the typewriter only contains the 26 letters of the alphabet (no space or other characters), and the monkey chooses the next key to press uniformly at random from the 26 options. suppose the monkey types n letters in total.
The probability of typing any particular sequence of n letters is (1/26)^n. The probability of word of length m (where m ≤ n) is (1/26)^m. The probability of at least one occurrence is 1 - (25/26)^(n-m+1). The number of times the monkey types a specific word of length m is (n-m+1)*(1/26)^m.
Assuming that the monkey's key presses are truly random and independent of each other, the probability of the monkey typing any particular sequence of n letters is (1/26)^n. This is because there are 26 choices for each letter, and the probability of the monkey choosing any particular letter is 1/26.
The probability of the monkey typing a specific word of length m (where m ≤ n) is (1/26)^m. This is because the monkey must type the specific sequence of m letters in order, and each letter has a probability of 1/26 of being typed.
The probability of the monkey typing at least one occurrence of a specific word of length m is 1 - (25/26)^(n-m+1). This is because the monkey has n-m+1 opportunities to type the word, and the probability of missing the word in any one opportunity is 25/26 (since there are 25 other letters that the monkey could type instead).
The expected number of times the monkey types a specific word of length m is (n-m+1)*(1/26)^m. This is the product of the probability of the monkey typing the word in any given opportunity (which is (1/26)^m), and the number of opportunities the monkey has to type the word (which is n-m+1).
To learn more about probability, refer:
https://brainly.com/question/30576587
#SPJ4
Bacteria colonies can increase by 45% every 7 days. If you start with 200 bacteria microorganisms, how large would the colony be after 35 days? First, identify I, the starting amount. Future Amount = [?](1+ Remember: Future Amount = (1 + r)t
After 35 days, the colony will be 1281.95.
What are Exponential Functions?Exponential functions are functions where the independent variable, x is in the exponent.
Given that,
Bacteria colonies can increase by 45% every 7 days.
We know that,
Future amount = l (1 + r)^t
where l is the starting amount, r is the growth rate and t is the time.
Here,
l = 200
r = 45% = 45 / 100 = 0.45
t = 35 / 7 = 5
Substituting,
Future amount = (200) (1 + 0.45)⁵
= 1281.95
Hence the required amount is 1281.95.
Learn more about Exponential functions here :
https://brainly.com/question/23601101
#SPJ2
Predict the missing component in the nuclear equation.
The missing component in the nuclear equation.137Cs55 → X + -e will be 137Ba56. option B is correct.
What is nuclear reaction?The particles in the nucleus are changed, and one element is transformed into another element when particles in the nucleus are gained or lost.
Nuclear reactions are processes in which one or more nuclides are produced from the collisions between two atomic nuclei or one atomic nucleus and a subatomic particle.
This was the first observation of an induced nuclear reaction, that is, a reaction in which particles from one decay are used to transform another atomic nucleus.
The most notable man-controlled nuclear reaction is the fission reaction which occurs in nuclear reactors. A target nucleus is within the range of nuclear forces for the time allowing for numerous interactions between nucleons.
therefore, option B is correct.
Learn more about nuclear reaction, here :
brainly.com/question/10104286
#SPJ1
Find an autonomous differential equation with all of the following properties:
equilibrium solutions at y=0 and y=3,
y' > 0 for 0 y' < 0 for -inf < y < 0 and 3 < y < inf
dy/dx =
The differential equation dy/dt = y(3-y) smug all of the given conditions.
One possible autonomous differential equation with equilibrium solutions at y=0 and y=3, and with y' > 0 for 0 < y < 3 and y' < 0 for -∞ < y < 0 and 3 < y < ∞, is:
dy/dt = y(3-y)
We can see that y=0 and y=3 are equilibrium solutions by setting dy/dt = 0 and solving for y:
dy/dt = y(3-y) = 0
y = 0 or y = 3
To check the sign of y', we can use the derivative of y(3-y) with respect to y: d/dy (y(3-y)) = 3 - 2y
For y < 0, we have y(3-y) < 0, so d/dy (y(3-y)) < 0, which says that y' < 0.
For 0 < y < 3, we have y(3-y) > 0, so d/dy (y(3-y)) > 0, which implies that y' > 0.
For y > 3, we have y(3-y) < 0, so d/dy (y(3-y)) < 0, which implies that y' < 0.
To know more about Differential equation:
https://brainly.com/question/14728084
#SPJ4
Choose the number of possible combinations shown by this tree diagram.
2 combinations
4 combinations
5 combinations
6 combinations
find all numbers whose absolute value is -4
All absolute values are greater than or equal to zero so there is no such absolute value of - 4.
What is an absolute value function?We know the absolute value function of the modulus function always outputs a positive value irrespective of the sign of the input.
In piecewise terms | x | = x for x ≥ 0 and | x | = - x for x < 0.
We know, |a| = a, |- a| = a, and |0| is 0 therefore, The least possible value of a modulus is zero.
Therefore, There is no such numbers whose modulus value is - 4.
learn more about modulus functions here :
https://brainly.com/question/13103168
#SPJ9
A customer bought an item for N$640 and paid N$160 down with an agreement to pay the balance plus a charge fee of N$16 in three months. Find the simple interest rate at which the customer was paying for the item.
The simple interest rate for the item is 13 1/3%.
What is the simple interest rate?
Simple interest is the charge on borrowing calculated as a linear function of the amount borrowed, time and the interest rate.
Interest rate = interest / (time x amount borrowed)
Interest = N$16time = 3/12 = 0.25 Amount borrowed = N$640 - N$160 = N$480Interest rate = N$16 / (N$480 x 0.25)
= 0.13333 = 13 1/3 %
To learn more about simple interest, please check: https://brainly.com/question/27328409
#SPJ1
Determine each product. a. (x-2) (3x+5)
Answer:
3x^2 - x - 10
Step-by-step explanation:
Foil (First, outside, inside, last)
3x^2 + 5x + -6x - 10
combine like terms
3x^2 - x - 10
7. a certain college graduate borrows $8000 to buy a car. the lender charges interest at an annual rate of 10%. assuming that interest is compounded continuously and that the borrower makes payments continuously at a constant annual rate k, determine the payment rate k that is required to pay off the loan in 3 years. a
The payment rate that is required to pay off the loan in 3 years is $3139.88 per year. The borrower will pay approximately $1695.64 in interest over the 3-year period.
The differential equation that models this situation is:
dy/dt = 0.10y - k
where y(t) is the amount owed at time t, 0.10 is the annual interest rate, and k is the annual payment rate. The initial condition is y(0) = $8000.
The first term on the right-hand side represents the interest that accumulates on the loan, and the second term represents the payments made by the borrower.
To determine the payment rate k that is required to pay off the loan in 3 years, we need to solve the differential equation with the initial condition y(0) = $8000 and the terminal condition y(3) = 0.
The general solution to the differential equation is:
y(t) = (8000/k) e^(0.10t) - (8000/k)
Setting t = 3 and y(3) = 0, we get:
0 = (8000/k) e^(0.30) - (8000/k)
Solving for k, we get:
k = 3139.88
Therefore, the payment rate that is required to pay off the loan in 3 years is $3139.88 per year.
To determine how much interest is paid during the 3-year period, we can integrate the interest rate over the time interval [0, 3]:
∫[0,3] 0.10y(t) dt = ∫[0,3] 0.10[(8000/k) e^(0.10t) - (8000/k)] dt
= (8000/k) [e^(0.30) - 1] - 2400
Substituting k = 3139.88, we get:
∫[0,3] 0.10y(t) dt ≈ $1695.64
Therefore, the borrower will pay approximately $1695.64 in interest over the 3-year period.
To know more about interest:
https://brainly.com/question/16967843
#SPJ4
____The given question is incomplete, the complete question is given below:
A certain college graduate borrows $8000 to buy a car. The lender charges interest at an annual rate of 10%. Assume that interest is compounded continuously and that the borrower makes payments continuously at a constant annual rate k. (a) Write a differential equation that models this situation, including the initial condi- tion. (b) Determine the payment rate k that is required to pay off the loan in 3 years. (c) Determine how much interest is paid during the 3-year period.
Create a scatter plot with the data. What is the correlation of this scatter
plot?
The solution is given below.
What is scatter plot?A scatter plot is a type of plot or mathematical diagram using Cartesian coordinates to display values for typically two variables for a set of data. If the points are coded, one additional variable can be displayed.
here, we have,
A scatter plot is a graph in which the values of two variables are plotted along two axes. Every data of the table is the coordinate of a point in the plot. To make a scatter plot, first assign a variable to x-axis and the other variable to y-axis, in this question speed was assigned to x-axis and distance was assigned to y-axis. And then, locate the points as coordinates, for example, the first point is (2, 5).
See picture attached.
Read more on scatter plot here:
brainly.com/question/28605735
#SPJ9
Consider the following parametric equation.
a. Eliminate the parameter to obtain an equation in x and y.
b. Describe the curve and indicate the positive orientation.
x=−10cos2t, y=−10sin2t; 0≤t≤π
a. Eliminating the parameter yields the equation [tex]x2+y2=100[/tex], which is a circle centered at the origin with a radius of 10.
b. The curve is a circle with a positive orientation, going counterclockwise from the origin.
a. To eliminate the parameter, we first square both sides of the equations to obtain: [tex]x2=(−10cos2t)2 and y2=(−10sin2t)2.[/tex]Then, since cos2t and sin2t are both between -1 and 1, the terms on the right hand side of each equation can be simplified to 100. Thus, the equation [tex]x2+y2=100[/tex]is obtained.
b. This equation describes a circle centered at the origin with a radius of 10. The positive orientation of the curve is counterclockwise from the origin, i.e. it starts at the origin and moves up, then to the right, then down, and then to the left.
Learn more about equation here
https://brainly.com/question/649785
#SPJ4
Ella participated in a race each week for four weeks. She recorded her race times in this chart. What inequality about her race times is true?
Solve the formula for h.
S =6pi squared +5pi x r
squared
Therefore, the formula for h, given the assumption that the formula is for the surface area of a cylinder, is: h = 3πr/2 + 3πr²/4.
What is equation?An equation is a mathematical statement that two expressions are equal to each other. It contains an equals sign (=) between two expressions, with one on each side. An equation can be used to describe a relationship between variables, to solve problems, or to represent a mathematical model. Equations can also be more complex and involve multiple variables and operations, such as the quadratic equation: ax² + bx + c = 0, where a, b, and c are constants and x is the variable. Solving equations is an important part of mathematics and many other fields of study, as it allows us to find solutions to problems and to model and understand real-world phenomena.
Here,
The given formula is:
S = 6π² + 5πr²
To solve for h, we need an equation that relates h to S and r. However, there is no h in the given formula. So either the formula is incomplete or we have to assume some relationship between h, S, and r.
If we assume that the formula is for the surface area of a cylinder, then we can relate h to S and r using the formula for the lateral surface area of a cylinder:
L = 2πrh
where L is the lateral surface area, h is the height, and r is the radius.
The total surface area S of a cylinder can be found by adding the area of the two circular bases (2πr²) to the lateral surface area:
S = 2πr² + L
S = 2πr² + 2πrh (substituting L with 2πrh)
Now we can rearrange this formula to solve for h:
S - 2πr² = 2πrh
h = (S - 2πr²) / (2πr)
Substituting the given value of S:
h = (6π² + 5πr² - 2πr²) / (2πr)
h = (6π² + 3πr²) / (2πr)
h = 3πr/2 + 3πr²/4
To know more about equation,
https://brainly.com/question/28243079?
#SPJ1
Suppose the data have a bell-shaped distribution with a mean 30 and a standard deviation of 5. Use the empirical rule to determine the percentage of data between 15 and 45.
Select one:
a. 95.00%
b. 97.35%
c. 99.70%
d. 81.50%
According to the empirical rule, for a bell-shaped distribution with a mean of 30 and a standard deviation of 5 is approximately 99.7%,
Using the empirical rule, we know that for a normal distribution with a mean of 30 and a standard deviation of 5, approximately:
68% of the data falls within 1 standard deviation of the mean, which in this case is between 25 and 35.95% of the data falls within 2 standard deviations of the mean, which in this case is between 20 and 40.99.7% of the data falls within 3 standard deviations of the mean, which in this case is between 15 and 45.Therefore, the percentage of data between 15 and 45 is approximately 99.7%, which corresponds to option c.
To learn more about the empirical rule, refer:-
https://brainly.com/question/30404590
#SPJ4
In 2000, a forest covered an area of 1500 km². Since then, this area has decreased by 6.25% each year.
Lett be the number of years since 2000. Let y be the area that the forest covers in km².
Write an exponential function showing the relationship between y and t.
The relationship between y and t can be modeled by an exponential function of the form:
y = a x e^(-rt)
What are exponential functions?An exponential function is a mathematical function which we write as a
f(x) = aˣ, where a is constant and x is variable term. The most commonly used exponential function is eˣ , where e is constant having value 2.7182
The relationship between y and t can be modeled by an exponential function of the form:
y = a x e^(-rt)
where a is the initial area of the forest (1500 km²), r is the rate of decrease (6.25%), and t is the number of years since 2000.
To find the value of r, we can convert 6.25% to a decimal:
r = 0.0625
Now we can plug in the values for a and r into our exponential function:
y = 1500 x e^(-0.0625t)
This exponential function shows the relationship between the area of the forest and the number of years since 2000.
To know more about exponential function check:
https://brainly.com/question/15352175
#SPJ1
Find each angle measure to the nearest degree.
3) sin U = 0.9945
4) tan C = 3.7321
The measure of angle U = 84° and the measure of angle C = 75°
The inverse of a trigonometric function.The sine, cosine, tangent, cotangent, secant, and cosecant functions are the fundamental trigonometric functions. Inverse trigonometric functions are just the inverse functions of these functions. They can also be referred to as antitrigonometric functions or arcus functions. To find the angle for any trigonometric ratio, these inverse trigonometric functions are applied.
Given that:
sin U = 0.9945
U = sin⁻¹ (0.9945)
U = 83.988°
U ≅ 84° ( to the nearest degree)
tan C = 3.7321
C = tan⁻¹ (3.7321)
C = 75°
Learn more about the inverse of a trigonometric function here:
https://brainly.com/question/18450088
#SPJ1
A fluctuating electric current I may be considered a uniformly distributed random variable over the interval (9, 11). If this current flows through a 2-ohm resistor, find the probability density function of the power P = 2I 2.
The Probability density function for the power P is f(P) = 1/2 * (1/P) for 162 < P < 242.
The power P is equal to 2I^2, so we can find the probability density function of P by finding the distribution of I first. A uniformly distributed random variable X over an interval (a, b) has a probability density function given by:
f(x) = 1/(b - a) for a < x < b
Since I is uniformly distributed over (9, 11), its probability density function is:
f(I) = 1/(11 - 9) = 1/2
Now, to find the distribution of P, we can use the transformation function P = 2I^2:
f(P) = f(I) * |dI/dP|
Using the chain rule, we have:
dI/dP = dI/d(2I^2) * d(2I^2)/dP = 1/2 * (2I) = I/P
So:
f(P) = f(I) * (1/P) = 1/2 * (1/P)
Now, we need to find the bounds for P. The power P can be calculated for any value of I between 9 and 11, so the bounds for P are:
P_min = 2 * 9^2 = 162
P_max = 2 * 11^2 = 242
Therefore, the probability density function for the power P is:
f(P) = 1/2 * (1/P) for 162 < P < 242
To know more about probability density function:
https://brainly.com/question/14284765
#SPJ4
____The given question is incomplete, complete question is given below:
A fluctuating electric current I may be considered a uniformly distributed random variable over the interval (9, 11). If this current flows through a 2-ohm resistor, find the probability density function of the power P = 2I^2.
d. In this situation, what does the solution to the equation C(t) = 2 tell us? Find
that solution.
e. Write an equation that would allow us to find the age of the car when we know
C(t).
ora 1 Unit 4
n 17
CC BY 2019 by Illustrative Mathematics®
The equation C(t) = 2 tells us that at a moment of t, the numeric value of the variable C is of 2 units.
How to define the ordered pair and how it relates to the numeric value?The general format of an ordered pair is given as follows:
(x,y).
The meaning of an ordered pair (x,y) is that y = f(x), meaning that the numeric value of the function at the value of x is of y.
The ordered pair for this problem is given as follows:
(t, C(t)) = (t,2).
Meaning that at a moment of t, the numeric value of the variable C is of 2 units.
More can be learned about ordered pairs at brainly.com/question/1528681
#SPJ1
Decide how many solutions this equation has:
x2 - 2x + 1 = 0