17. In aqueous solution, metal oxides can react with acids to form a salt and water:


Fe2O3(s) + 6 HCl(aq) → 2 FeCl3(aq) + 3 H200


How many moles of each product will be formed when 35 g of Fe2O3 react with 35 g of HCI?


A. 0. 32 mol FeCl3 and 0. 48 mol H2O


B. 0. 54 mol FeCl3 and 0. 21 mol H2O


C. 0. 76 mol FeCl3 and 0. 32 mol H2O


D. 0. 27 mol FeCl3 and 0. 89 mol H2O

Answers

Answer 1

1. Calculate the moles of Fe2O3:

moles of Fe2O3 = mass of Fe2O3 / molar mass of Fe2O3

moles of Fe2O3 = 35 g / (2 * atomic mass of Fe + 3 * atomic mass of O)

moles of Fe2O3 ≈ 35 g / (2 * 55.85 g/mol + 3 * 16.00 g/mol)

moles of Fe2O3 ≈ 35 g / 159.7 g/mol

moles of Fe2O3 ≈ 0.219 mol

2. Calculate the moles of HCl:

moles of HCl = mass of HCl / molar mass of HCl

moles of HCl = 35 g / (1 * atomic mass of H + 1 * atomic mass of Cl)

moles of HCl ≈ 35 g / (1 * 1.01 g/mol + 1 * 35.45 g/mol)

moles of HCl ≈ 35 g / 36.46 g/mol

moles of HCl ≈ 0.959 mol

3. Determine the limiting reactant:

Since the mole ratio between Fe2O3 and HCl is 1:6, we can compare the moles of each reactant. The limiting reactant is the one with fewer moles, which is Fe2O3 in this case.

4. Calculate the moles of products formed based on the limiting reactant:

From the balanced equation, 1 mole of Fe2O3 reacts to form 2 moles of FeCl3 and 3 moles of H2O.

moles of FeCl3 = 2 * moles of Fe2O3 ≈ 2 * 0.219 mol ≈ 0.438 mol

moles of H2O = 3 * moles of Fe2O3 ≈ 3 * 0.219 mol ≈ 0.657 mol

Therefore, the correct answer is:

A. 0.32 mol FeCl3 and 0.48 mol H2O.

To learn more about balanced equation click here : brainly.com/question/31242898

#SPJ11


Related Questions

Identify the items that are consistent with the determination of a rock's numeric age. Multiple select question. Actual age of the rock in thousands, millions, or billions of years Measuring the ratio of K atoms to Ar atoms Determining the mineralogical composition of the rock Noting the rock's position relative to other layers of sedimentary rocks Investigating natural radioactive decay

Answers

The items that are consistent with the determination of a rock's numeric age are:

1. Actual age of the rock in thousands, millions, or billions of years: This involves using various dating methods to determine the precise age of the rock in terms of time.

2. Measuring the ratio of K atoms to Ar atoms: This method, known as potassium-argon dating, is used to determine the age of rocks that contain potassium-bearing minerals by measuring the ratio of potassium to argon isotopes.

3. Investigating natural radioactive decay: Radioactive decay is a process that occurs in certain isotopes, and by measuring the ratio of parent isotopes to daughter isotopes, scientists can determine the age of the rock.

Determining the mineralogical composition of the rock and noting the rock's position relative to other layers of sedimentary rocks are not direct methods for determining numeric age but can provide supporting evidence and contextual information for age determination.

 To  learn  more  about rocks click here:brainly.com/question/19930528

#SPJ11

Which trial number from the following data set should produce the most amount of heat (energy) in joules in our acid-base neutralization calorimetry experiment? hint: see your data or do stoichiometric calculations using balanced reaction. Trial number volume of phosporic acid added (ml) volume of sodium hydroxide added (ml) 1 10. 0 10. 2000 2 15. 0 5. 2000 3 5. 0 15. 0

Answers

Trial 2 should produce the most amount of heat (energy) in joules in the acid-base neutralization calorimetry experiment.

To determine which trial number should produce the most amount of heat (energy) in joules in the acid-base neutralization calorimetry experiment, we need to consider the stoichiometry of the reaction between phosphoric acid (H3PO4) and sodium hydroxide (NaOH).

The balanced chemical equation for the reaction between H3PO4 and NaOH is as follows:

H3PO4 + 3NaOH → Na3PO4 + 3H2O

From the equation, we can see that the stoichiometric ratio between H3PO4 and NaOH is 1:3. This means that for every 1 mole of H3PO4, we need 3 moles of NaOH to completely react.

Now let's analyze the given data set:

Trial 1: Volume of phosphoric acid added = 10.0 mL, Volume of sodium hydroxide added = 10.0 mL

Trial 2: Volume of phosphoric acid added = 15.0 mL, Volume of sodium hydroxide added = 5.0 mL

Trial 3: Volume of phosphoric acid added = 5.0 mL, Volume of sodium hydroxide added = 15.0 mL

To determine the trial that produces the most heat, we need to calculate the moles of each reactant in each trial and compare them.

Trial 1:

Moles of H3PO4 = (10.0 mL / 1000 mL) * (0.2000 mol/L) = 0.002 mol

Moles of NaOH = (10.0 mL / 1000 mL) * (0.2000 mol/L) = 0.002 mol

Trial 2:

Moles of H3PO4 = (15.0 mL / 1000 mL) * (0.2000 mol/L) = 0.003 mol

Moles of NaOH = (5.0 mL / 1000 mL) * (0.2000 mol/L) = 0.001 mol

Trial 3:

Moles of H3PO4 = (5.0 mL / 1000 mL) * (0.2000 mol/L) = 0.001 mol

Moles of NaOH = (15.0 mL / 1000 mL) * (0.2000 mol/L) = 0.003 mol

From the calculations, we can see that Trial 2 has the highest number of moles of both H3PO4 and NaOH. Therefore, Trial 2 should produce the most amount of heat (energy) in joules in the acid-base neutralization calorimetry experiment.

Learn more about acid-base neutralization from the link given below.

https://brainly.com/question/31591186

#SPJ4

propose a synthesis starting with ethanol and ethyl butanoate

Answers

One possible synthesis starting with ethanol and ethyl butanoate is:

1. Convert ethanol to ethene via dehydration reaction using sulfuric acid as a catalyst.

2. React ethene with hydrogen gas in the presence of a nickel catalyst to form butane.

3. React butane with carbon monoxide in the presence of a rhodium catalyst to form butyraldehyde.

4. React butyraldehyde with ethanol to form 2-ethyl butyraldehyde.

5. Convert 2-ethyl butyraldehyde to ethyl butanoate via reaction with methanol and hydrochloric acid.

The synthesis involves a series of reactions starting with ethanol and ethyl butanoate, which are readily available starting materials. Ethanol can be dehydrated using sulfuric acid as a catalyst to produce ethene.

Ethene can be hydrogenated to form butane, which can then be converted to butyraldehyde via a rhodium-catalyzed reaction with carbon monoxide.

Butyraldehyde can then react with ethanol to form 2-ethyl butyraldehyde, which can be converted to ethyl butanoate via reaction with methanol and hydrochloric acid.

This synthesis demonstrates the versatility of these starting materials and the usefulness of catalytic reactions in organic synthesis.

To know more about "Catalyst" refer here:

https://brainly.com/question/30772559#

#SPJ11

Would ethanol (CH3CH2OH) be a suitable solvent in which to perform the following proton transfer? Explain your answer: + NH3 ·

Answers

Ethanol would be a suitable solvent in which to perform the proton transfer with NH3. This is because ethanol is a polar solvent with a high dielectric constant, which means it can dissolve both polar and nonpolar compounds.

In this case, the NH3 molecule is polar, and it would dissolve readily in ethanol.Additionally, ethanol has a low boiling point, making it easy to remove after the reaction is complete. NH3 is a weak base that can act as a proton acceptor. When placed in a suitable solvent such as ethanol, it can interact with proton donors to form a new compound. Ethanol is a suitable solvent for this reaction because it has the ability to dissolve both the reactants and products.

It also has a high dielectric constant, which means it can stabilize the charged species formed during the reaction. Additionally, ethanol has a low boiling point, which means it can be easily removed from the reaction mixture after the reaction is complete. Therefore, ethanol would be a suitable solvent in which to perform the proton transfer reaction with NH3.

To know more about ethanol refer to

https://brainly.com/question/25002448

#SPJ11

Find the temperature of a gas system constrained to a volume of 1758ml if the pressure is measured as. 84 atm. The system contains 5. 0mol of gas

Answers

To find the temperature of a gas system with a volume of 1758 mL and a pressure of 0.84 atm, containing 5.0 mol of gas, we can use the ideal gas law equation PV = nRT.

Where:

P = Pressure (in atm)

V = Volume (in liters)

n = Number of moles

R = Ideal gas constant (0.0821 L·atm/mol·K)

T = Temperature (in Kelvin)

First, we need to convert the volume from milliliters (mL) to liters (L):

V = 1758 mL = 1758 mL / 1000 mL/L = 1.758 L

Next, we can rearrange the ideal gas law equation to solve for temperature:

T = PV / (nR)

Substituting the given values:

T = (0.84 atm) * (1.758 L) / (5.0 mol * 0.0821 L·atm/mol·K)

Calculating this expression gives us:

T = 17.4 K

Therefore, the temperature of the gas system constrained to a volume of 1758 mL, with a pressure of 0.84 atm, and containing 5.0 mol of gas is approximately 17.4 Kelvin.

Learn more about ideal gas law equation  here

https://brainly.com/question/3778152

#SPJ11

which of the following chemicals provide health benefits and give plant foods their color, aroma, and flavor?

Answers

Plant foods are rich in phytochemicals, which are natural compounds that provide numerous health benefits. These phytochemicals are responsible for the color, aroma, and flavor of plant foods. Some of the important phytochemicals that provide health benefits include flavonoids, carotenoids, and anthocyanins.

Flavonoids are antioxidants that protect the body from damage caused by free radicals. They are found in many plant foods, including berries, citrus fruits, tea, and dark chocolate. Carotenoids are pigments that give plant foods their bright colors, such as red, yellow, and orange. They are converted into vitamin A in the body and have been linked to a lower risk of cancer, heart disease, and age-related eye diseases. Carotenoids are found in fruits and vegetables like carrots, tomatoes, sweet potatoes, and spinach.

Anthocyanins are pigments that give fruits and vegetables their deep red, blue, and purple colors. They are potent antioxidants and have been shown to reduce inflammation, protect against heart disease, and improve cognitive function. Foods that are high in anthocyanins include berries, grapes, red cabbage, and eggplant.

In summary, the phytochemicals flavonoids, carotenoids, and anthocyanins provide health benefits and give plant foods their color, aroma, and flavor. Including a variety of colorful fruits and vegetables in your diet is a great way to ensure that you are getting a range of phytochemicals to support your health.

To know more about Compounds visit :

https://brainly.com/question/14117795

#SPJ11

Using the Nernst Equation, what would be the potential of a cell with [Ni2+] = [Mg2+] = 0.10 M? I found that E cell = 2.11 Volts But I don't know what to put for the n of this proble

Answers

To use the Nernst Equation and determine the potential of a cell, we need to know the balanced equation for the cell reaction. Once we have the equation, we can determine the value of "n," which represents the number of electrons transferred in the reaction.

Without the specific balanced equation, it is not possible to determine the value of "n" for this problem. The balanced equation will indicate the stoichiometry of the reaction and the number of electrons involved.

Once you provide the balanced equation, I can help you determine the appropriate value of "n" and calculate the potential of the cell using the Nernst Equation.

To know more about Nernst Equation refer here

https://brainly.com/question/31593791#

#SPJ11

Draw the Lewis structures for the following compounds including all lone pairs of electrons: propane, C3H8 ethanol, CH3CH2OH

Answers

The Lewis structure for propane shows three carbon atoms bonded in a row, with each carbon atom having three hydrogen atoms bonded to it. There are no lone pairs of electrons in propane.

The Lewis structure for ethanol shows two carbon atoms bonded in a row, with five hydrogen atoms and one hydroxyl (-OH) group bonded to the carbon atoms. The hydroxyl group has two lone pairs of electrons. The carbon atoms each have one lone pair of electrons. The structure can be represented as [tex]H_3C-CH_2-OH[/tex], with the hydroxyl group bonded to the second carbon atom.

The Lewis structures help to show the arrangement of atoms and lone pairs of electrons in a molecule.

To know more about carbon atoms, here

brainly.com/question/2544405

#SPJ4

1)if we don't measure the concentration of persulfate at the clockpoint, how can we know its concentration?

Answers

If you don't measure the concentration of persulfate at the clockpoint, you can still estimate its concentration using the initial concentration, reaction rate constant, and elapsed time.

By applying the integrated rate law for a reaction (either zeroth, first, or second order), you can calculate the concentration of persulfate at a specific time based on the reaction's kinetics.

The integrated rate law allows you to calculate the concentration of a reactant at a given time based on the reaction's kinetics. The integrated rate law equation varies depending on the order of the reaction. The most common orders are zeroth, first, and second order reactions.

Therefore, even without directly measuring the concentration of persulfate at a specific time, you can still estimate its concentration by utilizing the integrated rate law and the known parameters of the reaction.

This estimation method is valuable in situations where direct measurement may not be feasible or practical.

To learn more about concentration, refer below:

https://brainly.com/question/10725862

#SPJ11

the ________ ion has eight valence electrons. a) sc3. b) ti3. c) cr3. d) v3. e) mn3.

Answers

The mn3 ion has eight valence electrons.

Mn3+ ion has eight valence electrons. The element manganese (Mn) has an atomic number of 25, which means it has 25 electrons in total. When it loses three electrons, it forms the Mn3+ ion, which means it has 22 electrons. Mn has five valence electrons, but when it loses three electrons to form Mn3+, it has eight valence electrons. Valence electrons are the outermost electrons in an atom and play a crucial role in chemical bonding. Mn3+ ion has a charge of +3 since it has lost three electrons.
The Scandium (Sc3+) has eight valence electrons. Scandium (Sc) has an atomic number of 21 and is in group 3 of the periodic table. In its neutral state, Sc has 21 electrons. When it forms a +3 ion, it loses three electrons, leaving it with 18 electrons. Since Sc is in the fourth period, it has four electron shells, and the third shell serves as the valence shell. The third electron shell can hold a maximum of 18 electrons, and in the case of Sc3+, it has 8 valence electrons.

To know more about eight valence electrons visit:

https://brainly.com/question/7972997

#SPJ11

The .mn3 ion has eight valence electrons. The manganese ion has eight valence electrons in its outermost energy level.

This is because manganese has five electrons in its 3d orbital and three electrons in its 4s orbital, giving it a total of eight valence electrons. When manganese loses three electrons to become a 3+ ion, it retains the same electron configuration in its outermost energy level. This makes it easier for manganese to form chemical bonds with other atoms, as it is more likely to gain or lose electrons in order to achieve a full outer shell of electrons.

Manganese is a transition metal and is found in many minerals, including pyrolusite, rhodochrosite, and manganite. It is also an essential nutrient for many living organisms, including humans. Manganese plays a key role in many biological processes, including bone formation, wound healing, and the metabolism of carbohydrates and amino acids.

To know more about valence electrons visit

https://brainly.com/question/7972997

#SPJ11

A 500.0 mL buffer solution is 0.100 M in HNO2 and 0.150 M in KNO2. Determine if each addition would exceed the capacity of the buffer to neutralize it.a. 250 mg NaOH
b. 350 mg KOHc. 1.25 g HBrd. 1.35 g HI

Answers

In a 500.0 mL buffer solution is 0.100 M in HNO₂ and 0.150 M in KNO₂ .Addition of any acid or base won't exceed the capacity of the buffer.

According to the given data,

Volume of buffer = 500.0 mL = 0.5 L

mol HNO₂ = 0.5 L × 0.100 mol/L = 0.05 mol HNO₂

mol NO₂⁻ = 0.5 L × 0.150 mol/L = 0.075 mol NO₂⁻

we know when any base more than 0.05 (HNO2) than exceed buffer capacity

and when any base more than 0.075 (KNO2) than exceed buffer capacity

when we add 250 mg NaOH (0.250 g)

than molar mass NaOH =40 g/mol

and mol NaOH = 0.250 g ÷ 40g/mol

mol NaOH  = 0.00625 mol

0.00625 mol NaOH will be neutralized by 0.00625 mol HNO₂

so it would not exceed the capacity of the buffer.

and

when we add 350 mg KOH (0.350 g)

than molar mass KOH =56.10 g

and mol KOH = 0.350 g ÷ 56.10 g/mol

mol KOH = 0.0062 mol

here also capacity of the buffer will not be exceeded

and

now we  add 1.25 g HBr

than molar mass HBr = 80.91 g/mol

and mol HBr = 1.25 g  ÷ 80.91 g/mol

mol HBr = 0.015 mol

0.015 mol HBr will neutralize 0.015 mol NO₂⁻  

so the capacity will not be exceeded.

and

we add 1.35 g HI  

molar mass HI = 127.91 g/mol

so mol HI = 1.35 g ÷ 127.91 g/mol

mol HI = 0.011 mol

capacity of the buffer will not be exceed

To know more about buffer solution here

https://brainly.com/question/16046415

#SPJ4

A generic salt, AB3 , has a molar mass of 333 g/mol and a solubility of 6.50 g/L at 25 °C. What is the Ksp of this salt at 25 °C? AB3(s)↽−−⇀A3+(aq)+3B−(aq) Ksp=

Answers

The Ksp of AB3 at 25 °C is 1.19 × 10^-8.

This means that at equilibrium, the product of the concentrations of A3+ and B- ions raised to the power of their stoichiometric coefficients is equal to the Ksp value, indicating a saturated solution of AB3 at 25 °C.

The molar solubility of AB³ can be calculated as follows:

Molar solubility = (6.50 g/L) / (333 g/mol) = 0.0195 mol/L

Since the stoichiometry of the salt is AB3, the equilibrium concentrations of A3+ and B- ions are equal to three times the molar solubility:

[A3+] = 3(0.0195) = 0.0585 mol/L

[B-] = 3(0.0195) = 0.0585 mol/L

The Ksp expression for the dissociation of AB3 is:

Ksp = [A3+][B-]^3

Substituting the equilibrium concentrations gives:

Ksp = (0.0585 mol/L)(0.0585 mol/L)^3 = 1.19 × 10^-8

To know more about "Stoichiometry" refer here:

https://brainly.com/question/28780091#

#SPJ11

You are adding 20.0 mL of 0.050 M HBr to 40.0 mL of 0.0250 M of Trimethyl amine, (CH3)3N, Kb = 6.5 x 10-5 Answer the following questions regarding this solution: a. How many moles of the conjugate acid of trimethyl amine do you have? b. What is the total volume of your solution (in mL)? c. What is the pH in the solution (to 1 decimal place )?

Answers

a. The moles of the conjugate acid of the trimethyl amine is 0.018 M.

b. The total volume of the solution is 60 mL.

c. The pH in the solution is 9.3.

The volume of the trimethylamine = 40.0 mL

The molarity of the  trimethylamine = 0.0250 M

The molarity of the HBr = 0.050 M

The volume of the HBr = 20.0 mL

kb = 6.5 × 10⁻⁵

pkb = - log kb

pkb = - log (6.5 × 10⁻⁵)

pkb = 4.18

The chemical equation :

(CH₃)₃  +  HCl  --->  (CH₃)₃HN⁺   + Cl⁻

The base = (CH₃)₃

The conjugated acid = (CH₃)₃HN⁺

The total volume of the solution = 20 + 40 = 60 mL

a. The concentration of trimethylamine = (0.025 × 0.040) / 0.055

The concentration of trimethylamine = 0.018 M

Concentration of conjugate acid = (0.020 × 0.050) / 0.055

Concentration of conjugate acid = 0.018 M

b. The total volume of the solution = 20 + 40 = 60 mL

c. pOH = pkb + log(acid / base)

pOH = 4.6

The pH = 14 - pOH

pH = 14 - 4.6

pH = 9.3.

To learn more about pH here

https://brainly.com/question/9616829

#SPJ4

10.0 mL of aqueous Al(OH); are titrated with 0.300 M HCl solution, 20.0 mL are required to reach the endpoint. What is the original concentration of the Ba(OH)2 solution?A) 0.20MB) 0.10MC) 0.40MD) 0.050ME) 0.700M

Answers

The original concentration of the Al(OH)₃ solution is A) 0.20 M (option A).

Al(OH)₃ + 3HCl → AlCl₃ + 3H₂O

Given, volume of Al(OH)₃ solution = 10.0 mL
Volume of HCl solution = 20.0 mL
Concentration of HCl = 0.300 M

Now, we'll use the stoichiometry from the balanced equation:
1 mol Al(OH)₃ reacts with 3 mol HCl

First, let's find the moles of HCl:
moles of HCl = concentration × volume = 0.300 M × 0.020 L = 0.006 mol

Using stoichiometry, we can now find the moles of Al(OH)₃:
moles of Al(OH)₃ = (1/3) × moles of HCl = (1/3) × 0.006 = 0.002 mol

Now, to find the original concentration of the Al(OH)₃ solution:
concentration = moles/volume = 0.002 mol / 0.010 L = 0.20 M

So, the original concentration of the Al(OH)₃ solution is 0.20 M (option A).

To know more about concentration, refer

https://brainly.com/question/17206790

#SPJ11

Note: The question is incomplete. Here is the complete question.

Question: 10.0 mL of aqueous Al(OH)₃; are titrated with 0.300 M HCl solution, 20.0 mL are required to reach the endpoint. What is the original concentration of the Ba(OH)₂ solution? A) 0.20MB) 0.10MC) 0.40MD) 0.050ME) 0.700M

a gas mixture in a 1.40- l container at 297 k contains 10.0 g of ne and 10.0 g of ar . calculate the partial pressure (in atm ) of ne and ar in the container.

Answers

The partial pressure of Ne is 8.78 atm and the partial pressure of Ar is 4.39 atm.

To calculate the partial pressure of ne and are in the container, we first need to determine the moles of each gas present. We can use the ideal gas law, PV = nRT, where P is pressure, V is volume, n is the number of moles, R is the gas constant, and T is temperature.
Given:
Volume (V) = 1.40 L
Temperature (T) = 297 K
Mass of Ne (m) = 10.0 g
Mass of Ar (m) = 10.0 g
We need to determine the number of moles of Ne and Ar. To do this, we can use the molar mass of each gas.
Molar mass of Ne = 20.18 g/mol
Molar mass of Ar = 39.95 g/mol
Number of moles of Ne = mass / molar mass = 10.0 g / 20.18 g/mol = 0.495 mol
Number of moles of Ar = mass / molar mass = 10.0 g / 39.95 g/mol = 0.250 mol
Now that we have the number of moles of each gas, we can use the ideal gas law to calculate the partial pressure of each gas.
For Ne:
n = 0.495 mol
R = 0.0821 L atm/mol K
P = (n * R * T) / V = (0.495 mol * 0.0821 L atm/mol K * 297 K) / 1.40 L = 8.46 atm
For Ar:
n = 0.250 mol
R = 0.0821 L atm/mol K
P = (n * R * T) / V = (0.250 mol * 0.0821 L atm/mol K * 297 K) / 1.40 L = 4.31 atm
Therefore, the partial pressure of Ne in the container is 8.46 atm and the partial pressure of Ar is 4.31 atm.
To calculate the partial pressure of Ne and Ar in the container, we'll use the Ideal Gas Law (PV=nRT) and the formula for partial pressure (P = n/V × RT).
First, we need to determine the moles of Ne and Ar:
Ne: 10.0 g / (20.18 g/mol) = 0.496 moles
Ar: 10.0 g / (39.95 g/mol) = 0.250 moles
Now, we can calculate the partial pressures for each gas:
Ne: (0.496 moles) / (1.40 L) × (0.0821 L atm/mol K) × (297 K) = 8.78 atm
Ar: (0.250 moles) / (1.40 L) × (0.0821 L atm/mol K) × (297 K) = 4.39 atm

To know more about partial visit :-

https://brainly.com/question/16048157

#SPJ11

Indicate whether the solute liquid is generally miscible or immiscible in each solvent liquid
Solute Solvent
Polar Liquid Nonpolar Liquid
polar liquid
nonpolar liquid

Answers

Generally, a polar solute liquid is miscible in a polar solvent liquid, while a nonpolar solute liquid is miscible in a nonpolar solvent liquid. However, a polar solute liquid is typically immiscible in a nonpolar solvent liquid, and vice versa.

For example, water (a polar liquid) is miscible with ethanol (a polar liquid) but immiscible with hexane (a nonpolar liquid). On the other hand, hexane is miscible with other nonpolar solvents like benzene but immiscible with water.

The reason for this is because like dissolves like. Polar molecules are attracted to other polar molecules due to their dipole moments, while nonpolar molecules are attracted to other nonpolar molecules due to their lack of dipole moments. Thus, a polar solute liquid will dissolve in a polar solvent liquid because the polar solvent molecules can surround and stabilize the polar solute molecules. Similarly, a nonpolar solute liquid will dissolve in a nonpolar solvent liquid because the nonpolar solvent molecules can surround and stabilize the nonpolar solute molecules.

Know more about Dipole Moment here:

https://brainly.com/question/14140953

#SPJ11

A 30. 0 g sample of a metal is heated to 200 C and placed in a calorimeter containing 75. 0 grams of water at 20. 0 C. After the metal and water reach thermal equilibrium, the thermometer on the calorimeter reads 34. 30 C. What is the specific heat of the metal? CH2O = 4. 184 J/gC

Answers

To findspecific heat of the metal, we can use the principle of heat transfer. Heat gained by the water is equal to the heat lost by the metal at thermal equilibrium. The specific heat of the metal is to be 0.451 J/g°C.

By calculating the heat gained by the water and the heat lost by the metal, we can find the specific heat of the metal.

The heat gained by the water can be calculated using the formula: Q = m * c * ΔT, where Q is the heat gained, m is the mass of the water, c is the specific heat of water, and ΔT is the change in temperature.

The heat lost by the metal can be calculated using the same formula, substituting the mass and specific heat of the metal, and the change in temperature.By setting the heat gained equal to the heat lost and solving for the specific heat of the metal, we can determine its value.

Using the given values and the calculations, the specific heat of the metal is found to be 0.451 J/g°C.

To learn more about principle of heat transfer click here : brainly.com/question/32791249

#SPJ11

for a chemical reaction, the rate constant at 45.61 °c is 0.004545 s‑1, while the rate constant at 58.78 °c is 0.017347 s‑1. calculate the activation energy in kj/mol.

Answers

The activation energy for the given chemical reaction is 83.3 kJ/mol.

How to find the activation energy?

The activation energy of a chemical reaction can be calculated using the Arrhenius equation which relates the rate constant of a reaction with temperature and activation energy. By knowing the rate constants at two different temperatures, we can calculate the activation energy of the reaction.

The Arrhenius equation is given by: k = A * exp(-Ea/RT)

where k is the rate constant, A is the pre-exponential factor, Ea is the activation energy, R is the gas constant, and T is the temperature in Kelvin.

In this case, we are given the rate constants at two different temperatures, which allows us to calculate the activation energy of the reaction.

By taking the natural logarithm of the Arrhenius equation at both temperatures and subtracting the resulting equations, we can obtain the activation energy.

By using the given data and solving the equation, we find that the activation energy for the reaction is 83.3 kJ/mol.

Learn more about Arrhenius equation

brainly.com/question/24375075

#SPJ11

determine the mass of potassium in 31.0 g g of kcl k c l .

Answers

We first need to know the percent composition of potassium in KCl. KCl contains one atom of potassium (K) and one molecule of chloride (Cl). The molar mass of KCl is 74.55 g/mol, and the molar mass of potassium is 39.10 g/mol. The mass of potassium in 31.0 g of KCl is 16.23 g.

To find the percent composition of potassium in KCl, we can use the formula:
% composition = (mass of element / total mass of compound) x 100%
% composition of K = (39.10 g/mol / 74.55 g/mol) x 100% = 52.36%
So, 52.36% of the mass of KCl is potassium.
To determine the mass of potassium in 31.0 g of KCl, we can use the following calculation:
mass of K = % composition of K x total mass of compound
mass of K = 52.36% x 31.0 g = 16.23 g
Therefore, the mass of potassium in 31.0 g of KCl is 16.23 g.

Learn more about mass at

brainly.com/question/19694949

#SPJ11

1.00 mL of water at 25 C is heated to 100 C, at which point it boils at an atmospheric pressure of 1 atm and is vaporized. What is the difference in volume (in mL) when this happens? (At 25 C, liquid water has a density of 0.997 g/mL.)

Answers

1.00 mL of water at 25°C is heated to 100°C, where it boils at 1 atm air pressure and is vaporized. The volume difference is 1989 mL.

The volume difference between liquid water and steam at 100°C can be calculated using the ideal gas law, which states that PV = nRT, where P is the pressure, V is the volume, n is the number of moles of gas, R is the gas constant, and T is the temperature in Kelvin.

Assuming the water behaves as an ideal gas, we can use the equation to calculate the volume of water vapor produced:

n = m/M, where m is the mass of the water and M is the molar mass of water.

m = 1.00 mL x 0.997 g/mL = 0.997 g

M = 18.015 g/mol

n = 0.997 g / 18.015 g/mol = 0.0553 mol

The initial pressure is 1 atm and the final pressure is also 1 atm, since the water is boiling at atmospheric pressure. We also know that the temperature is 100°C = 373 K.

Using the ideal gas law, we can solve for the final volume:

V = nRT/P = (0.0553 mol)(0.08206 L·atm/(mol·K))(373 K)/(1 atm) = 1.99 L

Therefore, the difference in volume is:

1.99 L - 0.001 L = 1.989 L = 1989 mL

The volume of the water vapor is much larger than the volume of the liquid water, which is why steam can cause explosions if confined in a closed container.

To know more about the Density, here

https://brainly.com/question/15966885

#SPJ4

Even though B contains three ester groups, a single Dieckmann product results when B is treated with NaOCH, in CH,OH, followed by H,0+. OCH, H.COM Part 1: Why is only one product formed from B? Only esters with 2 or 3 H's on the a carbon form enolates that undergo Claisen reaction to form resonance-stabilized enolates of the product keto ester. Thus, the enolate forms on the CH to one ester carbonyl, and cyclization yields a five-membered "ring. Part 2 out of 2 Draw the structure of the product formed. OCH, NaOCH Report problem CH, OH Hint draw structure... Solution

Answers

The structure of the product will have a five-membered ring containing the keto ester and two remaining ester groups in the molecule.

The product formed from B when treated with NaOCH in CH3OH, followed by H3O+ is a cyclic keto ester called 5-methyl-2-oxocyclopentylacetate. The structure is as follows:
CH3OCH2C(=O)CH2C(=O)OCH3
The enolate forms on the CH to one ester carbonyl, and cyclization yields a five-membered ring.
Part 1: Only one product is formed from B because only esters with 2 or 3 hydrogens on the alpha carbon can form enolates that undergo the Claisen reaction, leading to resonance-stabilized enolates of the product keto ester. In this case, the enolate forms on the CH adjacent to one ester carbonyl, and cyclization occurs, resulting in a five-membered ring.
Part 2: To draw the structure of the product formed, follow these steps:
1. Identify the ester group in B with 2 or 3 hydrogens on the alpha carbon.
2. Form an enolate by deprotonating the alpha carbon with NaOCH3 (the base).
3. Undergo a Claisen reaction: the enolate will attack the carbonyl carbon of another ester group in B.
4. Form a resonance-stabilized enolate of the product keto ester.
5. Cyclize the molecule to form a five-membered ring by forming a new bond between the alpha carbon and the carbonyl carbon.
6. Protonate the enolate oxygen with H3O+ to form the final product.
The structure of the product will have a five-membered ring containing the keto ester and two remaining ester groups in the molecule.

For more such questions on keto ester , Visit:

https://brainly.com/question/9559044

#SPJ11

Hi there! Based on your provided information, let's analyze the reaction:

Part 1: Only one product is formed from compound B because the Dieckmann condensation specifically occurs when an ester has two or three hydrogens on the alpha carbon (CH2 or CH3), allowing it to form an enolate ion that undergoes the Claisen reaction. In this case, the enolate forms on the CH2 adjacent to one ester carbonyl, leading to cyclization and a resonance-stabilized enolate of the product keto ester. This process generates a five-membered ring.

Part 2: As a text-based AI, I cannot draw the product's structure. However, I can describe it to you. The product will have a five-membered ring with a keto ester moiety, which will contain a carbonyl group (C=O) adjacent to the ester group (C-O-R) within the ring.

To know more about Deickmann condensation, click here :

brainly.com/question/31180665

#SPJ11

Hey need some help ASAP.

Adult humans have 24 vertebrae in their spinal column. How are these bones classified?

A. long bone

B. irregular bone

C. flat bone

D. short bone

Answers

The vertebrae in the human spinal column are classified as irregular bones. Option B is correct.

Irregular bones have complex shapes that do not fit into other bone classification categories. The vertebrae are irregular because they have a unique structure and shape that allows them to interlock and articulate with each other to form the spinal column.

The spinal column is divided into different regions, including the cervical, thoracic, lumbar, sacral, and coccygeal regions, and each region has a distinct number of vertebrae with specific characteristics. The vertebrae consist of a body, vertebral arch, and various processes for muscle and ligament attachment.

The spinal cord runs through a central canal in the vertebral arch, and nerves branch out between the vertebrae to various parts of the body. Overall, the irregular shape of the vertebrae is critical for providing flexibility, support, and protection to the spinal cord and the body. Option B is correct.

To know more about the Vertebrae, here

https://brainly.com/question/1916134

#SPJ1

What would be the reagents that you would use to convert 3-pentanone into 3-hexanone?

Answers

To convert 3-pentanone into 3-hexanone, the reagent that can be used is lithium aluminum hydride (LiAlH4) followed by oxidation with sodium dichromate (Na2Cr2O7) or potassium permanganate (KMnO4). T

he reduction with LiAlH4 will convert the ketone group of 3-pentanone into a secondary alcohol, which can then be oxidized using Na2Cr2O7 or KMnO4 to yield 3-hexanone.

To convert 3-pentanone into 3-hexanone, you would use the following reagents and steps:

1. First, perform a Grignard reaction. Use ethylmagnesium bromide (C2H5MgBr) as the Grignard reagent, and diethyl ether as the solvent. This will add an ethyl group to the carbonyl carbon of 3-pentanone, forming a tertiary alcohol.

2. Next, carry out an oxidation reaction using pyridinium chlorochromate (PCC) as the oxidizing agent to convert the tertiary alcohol back into a ketone. This will yield the desired product, 3-hexanone.

So, the reagents you would use to convert 3-pentanone into 3-hexanone are ethylmagnesium bromide (C2H5MgBr), diethyl ether, and pyridinium chlorochromate (PCC).

To know more about Reagent visit:

https://brainly.com/question/31228572

#SPJ11

what is the percent yeild of 3 NH4NO3 + Na3PO4 -> (NH4)3PO4 + 3 NaNO3

Answers

To determine the percent yield of a chemical reaction, we need to compare the actual yield of the reaction to the theoretical yield. The information given in the question is not sufficient to calculate the percent yield. Therefore, the answer is d. The percent yield cannot be determined without knowing the actual yield of the reaction.

The percent yield of a chemical reaction is the ratio of the actual yield to the theoretical yield, expressed as a percentage. The actual yield is the amount of product obtained from the reaction, while the theoretical yield is the maximum amount of product that can be obtained, based on the stoichiometry of the reaction and assuming complete conversion of the reactants. The equation given in the question is a balanced chemical equation, which tells us the stoichiometry of the reaction, but it does not provide information about the amounts of reactants and products used or obtained. Without knowing the actual yield of the reaction, we cannot calculate the percent yield. Therefore, the answer is d. The percent yield cannot be determined without knowing the actual yield of the reaction.

To learn more about percent yield click here : brainly.com/question/17042787

#SPJ11

how is pressure affected by force​

Answers

Pressure is directly proportional to force. This means that an increase in force will result in an increase in pressure, while a decrease in force will result in a decrease in pressure. The mathematical relationship and force is given by the equation: Pressure = Force / Area.

you react 25.0 g hydrogen gas with 39.1 g oxygen gas. determine the mass of water that can be produced from these reactants. (mm h2 = 2.02g/mol, mm o2 = 32.00g/mol, mm h2o = 18.02g/mol.)

Answers

The mass of water that can be produced from the given reactants can be calculated using stoichiometry. The mass of water that can be produced is 36.02 g.

To determine the mass of water produced, we need to determine the limiting reactant first. This is done by comparing the moles of hydrogen and oxygen present in the given amounts.

First, we convert the given masses of hydrogen gas (H2) and oxygen gas (O2) into moles using their molar masses:

Hydrogen gas: 25.0 g / 2.02 g/mol = 12.38 mol

Oxygen gas: 39.1 g / 32.00 g/mol = 1.22 mol

Next, we look at the balanced chemical equation for the reaction between hydrogen and oxygen to form water, which is 2H2 + O2 -> 2H2O.

From the equation, we see that the ratio of hydrogen to oxygen is 2:1. However, in the given amounts, the ratio is approximately 12.38:1.22, which means there is an excess of hydrogen.

Since oxygen is the limiting reactant, the moles of water produced will be determined by the moles of oxygen. From the equation, 1 mole of oxygen produces 2 moles of water.

Therefore, the moles of water produced are 1.22 mol of O2 * 2 mol H2O/mol O2 = 2.44 mol H2O.

Finally, we convert the moles of water to grams using the molar mass of water: 2.44 mol H2O * 18.02 g/mol = 43.93 g H2O.

Hence, the mass of water that can be produced from the reactants is 43.93 g.

Learn more about reactant here:

https://brainly.com/question/30129541

#SPJ11

3. when struck with light of a sufficient energy, what are some likely outcomes of the photochemical decomposition of silver chloride? write chemical reactions.

Answers

Outcomes of the photochemical decomposition of silver chloride are Formation of silver (Ag) and chlorine (Cl2) gas and Production of silver and other silver chloride complexes.

When silver chloride (AgCl) is struck with light of sufficient energy, it undergoes a photochemical decomposition reaction. Some likely outcomes of this process are:

1. Formation of silver (Ag) and chlorine (Cl2) gas:
AgCl (solid) + light energy → Ag (solid) + 1/2 Cl2 (gas)

2. Production of silver and other silver chloride complexes, depending on the environment and the presence of other ions:
AgCl (solid) + light energy → Ag (solid) + Cl- (aqueous)

In both reactions, the key factor is that light energy is absorbed by the silver chloride, causing its decomposition into silver and either chlorine gas or other silver chloride complexes.

For more questions on photochemical decomposition:

https://brainly.com/question/17110487

#SPJ11

Outcomes of the photochemical decomposition of silver chloride are Formation of silver (Ag) and chlorine (Cl2) gas and Production of silver and other silver chloride complexes.

When silver chloride (AgCl) is struck with light of sufficient energy, it undergoes a photochemical decomposition reaction. Some likely outcomes of this process are:1. Formation of silver (Ag) and chlorine (Cl2) gas:AgCl (solid) + light energy → Ag (solid) + 1/2 Cl2 (gas)2. Production of silver and other silver chloride complexes, depending on the environment and the presence of other ions: AgCl (solid) + light energy → Ag (solid) + Cl- (aqueous)In both reactions, the key factor is that light energy is absorbed by the silver chloride, causing its decomposition into silver and either chlorine gas or other silver chloride complexes.

Learn more about photochemical decomposition here :

brainly.com/question/17110487

#SPJ11

Which type of organism in this tuterlal can get its nitrogen from nitrogen fixation (converting N 2 gas into ammonia). allewing it to grow even it easily used foems of nitrogen are not avallable in its water or food? Cyanebacteria Dapinitu liormina Trout

Answers

The organism in this tutorial that can get its nitrogen from nitrogen fixation is cyanobacteria. Cyanobacteria are known for their ability to convert atmospheric nitrogen gas into ammonia through nitrogen fixation.

This process allows cyanobacteria to grow even if there is a lack of available forms of nitrogen in their environment. In fact, cyanobacteria play a crucial role in many ecosystems by providing a source of fixed nitrogen that can be used by other organisms. While some other organisms, such as certain types of bacteria, also have the ability to perform nitrogen fixation, cyanobacteria are often considered the most important nitrogen fixers in aquatic ecosystems. Overall, cyanobacteria's unique ability to fix nitrogen makes them an important component of many food webs and ecosystems.

To know more about nitrogen fixation visit :

https://brainly.com/question/8951119

#SPJ11

Aniline is to be cooled from 200 to 150°F in a double-pipe heat exchanger. For cooling, a stream of toluene amounting to 8600 lb/hr at a temperature of 100°Fis available. The exchanger consists of 1 1/4-in Schedule 40 pipe inside a 2-in Schedule 40 pipe. The aniline flow rate is 10,000 lb/hr. The overall heat-transfer coefficient based on the outside area is given as 100 BTUhr ft °F. (a) If flow is countercurrent, what are the toluene outlet temperature, the LMTD (i.e. ATLM), and the heat transfer area needed to do this job? (b) What are they if flow is parallel? You need to look up any physical properties that are required.

Answers

In a double-pipe heat exchanger, aniline can be cooled by toluene, with different outlet temperatures for countercurrent and parallel flow.

In this scenario, aniline needs to be cooled from 200°F to 150°F using toluene as the cooling agent.

The flow rate of aniline is 10,000 lb/hr, and a stream of toluene at 8600 lb/hr and 100°F is available.

The heat exchanger is made up of 1 1/4-in Schedule 40 pipe inside a 2-in Schedule 40 pipe, and the overall heat-transfer coefficient based on the outside area is 100 BTUhr ft °F. For countercurrent flow, the toluene outlet temperature is 165°F, the LMTD is 52.67°F, and the heat transfer area needed is 17.06 ft².

For parallel flow, the toluene outlet temperature is 162.5°F, the LMTD is 53.14°F, and the heat transfer area needed is 18.22 ft².

Physical properties like heat capacities and viscosities need to be looked up to calculate these values.

For more such questions on heat, click on:

https://brainly.com/question/30738335

#SPJ11

For countercurrent flow, the toluene outlet temperature is 162.5°F, the LMTD is 41.3°F, and the required heat transfer area is [tex]184.5 ft^2[/tex].

For parallel flow, the toluene outlet temperature is 173.4°F, the LMTD is 34.3°F, and the required heat transfer area is [tex]237.2 ft^2.[/tex].

In a double-pipe heat exchanger, the two fluids flow in separate pipes with one inside the other. The heat transfer occurs through the wall of the inner pipe.

The LMTD is used to calculate the heat transfer rate and is dependent on the temperature difference between the two fluids. Countercurrent and parallel flow are two configurations used in heat exchangers.

In countercurrent flow, the two fluids flow in opposite directions, while in parallel flow, they flow in the same direction. The required heat transfer area depends on the overall heat-transfer coefficient, the LMTD, and the mass flow rates of the fluids.

In this problem, the required heat transfer area is calculated for both countercurrent and parallel flow, along with the toluene outlet temperature and LMTD. Physical properties such as the specific heat and density of the fluids are required for these calculations.

Learn more about toluene here :

https://brainly.com/question/29899857

#SPJ11

what is e° for the reaction 2 au(s) 3 ca²⁺(aq) → 2 au³⁺(aq) 3ca(s)?

Answers

The E°, standard electrode potential, for the reaction 2Au(s) + 3Ca²⁺(aq) → 2Au³⁺(aq) + 3Ca(s) is +4.366 V.

E°, or standard electrode potential, is a measure of the tendency of a species to gain or lose electrons and undergo a reduction or oxidation reaction. In the given reaction, 2Au(s) is being oxidized to Au³⁺(aq) while 3Ca²⁺(aq) is being reduced to Ca(s).

To calculate the E° for this reaction, we need to look up the standard electrode potentials for the two half-reactions and use them to calculate the overall potential difference. The half-reactions are:

Au³⁺(aq) + 3e⁻ → Au(s) E° = +1.498 V
Ca²⁺(aq) + 2e⁻ → Ca(s) E° = -2.868 V

To calculate the E° for the overall reaction, we add the two half-reactions together and cancel out the electrons:

2Au(s) + 3Ca²⁺(aq) → 2Au³⁺(aq) + 3Ca(s)

E° = E°(Au³⁺/Au) - E°(Ca²⁺/Ca)
E° = +1.498 V - (-2.868 V)
E° = +4.366 V

Therefore, the E° for the reaction 2Au(s) + 3Ca²⁺(aq) → 2Au³⁺(aq) + 3Ca(s) is +4.366 V.

More on electrode potential: https://brainly.com/question/17214728

#SPJ11

Other Questions
discuss the investigation of serial homicides and the unique challenges they present to investigators. Halle planted mint and basil seeds in her herb garden. She measured the height of each herb plant at the end of each week for six weeks. The results are shown in the line graph below.What is the difference to the nearest tenth in the mean growth per week for both herbs during the six weeks shown in the graph?A. 0.7cm/weekB. 0.6cm/weekC. 3.7cm/week At the O.K Daily Milk Company, machine X fills a box with milk, and machine Y eliminates milk-box if the weight is less than 450 grams, or greater than 500 grams. If the weight of the box that will be eliminated by machine Y is E, in grams, which of the following describes all possible values of E ?AE475450C475E=25DE475>25 _____ has emerged as a leading figure in the interpersonal approach to group therapy. Match the sentence below with the right school event.Students learn about critical thinking through budgeting for supplies.Options:1- school 22-school 33-school 1 explain how thurgood marshall, dr martin luther king jr, and the southern christian leadership conference contributed to the beginnings of the modern civil rights movement Topic 3: Nationalism Internte Modern History Sourcebook Giuseppe Mazzini: On Nationality, 1852 Giuseppe Mazzini (18051872), the founder (1831) of Young Italy, was perhaps the leading figure in liberal nationalism. He saw the creation of a democratic Italian state as crucial to Italy's development. Europe no longer possesses unity of faith, of mission, or of aim. Such unity is a necessity in the world. Here, then, is the secret of the crisis. It is the duty of every one to examine and analyse calmly and carefully the probable elements of this new unity. But those who persist in perpetuating, by violence or by Jesuitical compromise, the external observance of the old unity, only perpetuate the crisis, and render its issue more violent. There are in Europe two great questions; or, rather, the question of the transformation of authority, that is to say, of the Revolution, has assumed two forms; the question which all have agreed to call social, and the question of nationalities. The first is more exclusively agitated in France, the second in the heart of the other peoples of Europe. I say, which all have agreed to call social, because, generally speaking, every great revolution is so far social, that it cannot be accomplished either in the religious, political, or any other sphere, without affecting social relations, the sources and the distribution of wealth; but that which is only a secondary consequence in political revolutions is now the cause and the banner of the movement in France. The question there is now, above all, to establish better relations between labour and capital, between production and consumption, between the workman and the employer. It is probable that the European initiative, that which will give a new impulse to intelligence and to events, will spring from the question of nationalities. The social question may, in effect, although with difficulty, be s partly resolved by a single people; it is an internal question for each, and the French Republicans of 1848 so understood it, when, determinately abandoning the European initiative, they placed Lamartine's [Note: A French poet and politician] manifesto by the side of their aspirations towards the organisation of labour. The question of nationality can only be resolved by destroying the treaties of 1815, and changing the map of Europe and its public Law. The question of Nationalities, rightly understood, is the Alliance of the Peoples; the balance of powers based upon new foundations; the organisation of the work that Europe has to accomplish. 1. Think about the purpose of the source. What was the author's message or argument? What was he/she trying to get across? Is the message explicit, or are there implicit messages as well? Complete and balance the following equations representing neutralization reactions: 28. 2CsOH + H2CO3 ?--+- 29, 2HF + Mg(OH)2 ?--+- 30. 3HNOg + Al (OH)3?--+- 31, + ?H2O + FrF 32 + ?H2O + LiBrOg when dr. wheeler was training the raters for his experiment he stressed multiple times that they needed to try and rate the videos: evidence or arguments for possible giant black holes in the centers of galaxies comes in part from:a. potential explanations for quasar energy sources.b. the absence of light from these regions.c. the appearance of relativistic jets from the nuclei of many different galaxies..d. large Doppler shifts (blue and red) from stars in the central region of certain giant elliptical galaxies.e. a full explanation of the missing mass problem.(There can be multiple correct answers or no correct answers) the usual remedy for breach of contract is: group of answer choices injunction punitive damages money damages specific performance The system in Problem 9.6 was placed under a closed-loop PI control. Determine if the system will have an overshoot for a step input:a. Kp = 2 and Ki = 1b. Kp = 1 and Ki = 3 Radius of a circle with a circumference of 21.99 feet What is the area of this figure? 3 km 3 km 1 km 5 km 4 km 1 km 3 km 1 km Write your answer using decimals, if necessary. Square kilometers A square-channeled stream has a depth of 2m and a width of 8m. It takes a piece of floating debris 10 minutes to travel 700m in the stream. What is the discharge of the stream (in m/second)? (1 minute = 60 seconds) Express your answer as a number rounded to the nearest hundredth (two decimal places) with the units m3/sec, no spaces. (i.e 1422.43m3/sec) ____ are collections of IP addresses of known spam sources on the Internet, and they can be easily integrated into most SMTP server configurations. Shelley purchased a residential apartment for $1,400,000 and placed it in service on September 5. Which of the following statements is false? a) Shelley must allocate the purchase price between the non-depreciable land and the depreciable building b) Shelley is allowed on half-year of MACRS depreciation with respect to the apartment building this year c) MACRS depreciation on the building is computed under the straight-line method d) None of these statements are false If 7 out of 1200 students are not able to schedule an elective into their course of study, what is the sigma value of the scheduling process? (Calculate the probability of being able to schedule an elective and then use the NORM.INV function. Round to a whole number.) implies that humans are rational beings with the ability to unlock natures secrets and manipulate the world to their own ends. FILL THE BLANK. _____ therapy refers to therapy that is provided by one therapist working with several people simultaneously.