Check the picture below.
so let's get the chord using the pythagorean theorem hmmm using sine
[tex]\sin(35^o )=\cfrac{\stackrel{opposite}{x}}{\underset{hypotenuse}{5}}\implies 5\sin(35^o )=x\implies 2.87\approx x~\hfill \underset{ PQ }{\stackrel{ 2.87+2.87 }{\approx \text{\LARGE 5.74}}}[/tex]
now let's get the arc
[tex]\textit{arc's length}\\\\ s = \cfrac{\theta \pi r}{180} ~~ \begin{cases} r=radius\\ \theta =\stackrel{degrees}{angle}\\[-0.5em] \hrulefill\\ \theta =70\\ r=5 \end{cases}\implies s=\cfrac{(70)\pi (5)}{180}\implies s\approx \text{\LARGE 6.11}[/tex]
and the perimeters, keeping in mind that for the sector is just the arc plus the radii, and for the segment is simply the arc plus the chord.
[tex]\stackrel{ \textit{sector's perimeter} }{5+5+6.11 ~~ \approx ~~} \text{\LARGE 16.11}\hspace{5em}\stackrel{ \textit{segment's perimeter} }{5.74+6.11 ~~ \approx ~~} \text{\LARGE 11.85}[/tex]
In order to make the same amount of money, they would have to each sell ______ bicycles. They would both make $______.
They would each need to sell 5 bicycles to make the same amount of money and if they both sell 5 bicycles, they would each make $500.
What do you mean by finding the break-even point ?
The key concept used here is the idea of finding the break-even point between two scenarios. In this case, the break-even point is the number of bicycles that Jim and Tom each need to sell in order to make the same amount of money. This is found by setting their total earnings equal to each other and solving for the number of bicycles. Once the break-even point is found, the total earnings for that number of bicycles can be calculated by plugging it back into the original equations. This concept is commonly used in business and finance to determine the minimum level of sales needed to cover costs and make a profit.
Calculating the number of bicycle and money :
To make the same amount of money, Jim and Tom would have to each sell the same number of bicycles, let's call it "b".
So Jim would make a total of:
250 + 50b dollars
Tom would make a total of:
400 + 20b dollars
To find the value of "b" where they both make the same amount of money, we can set the two expressions equal to each other and solve for "b":
250 + 50b = 400 + 20b
30b = 150
b = 5
Therefore, they would each need to sell 5 bicycles to make the same amount of money.
To find out how much they would make, we can substitute "b=5" into either of the expressions above:
Jim:
250 + 50(5) = $500
Tom:
400 + 20(5) = $500
Therefore, if they both sell 5 bicycles, they would each make $500.
To know more about money visit :
brainly.com/question/14253896
#SPJ1
Find the unknown lengths in these similar triangles. (Round off to two decimal places.)
The value of the unknown lengths in these similar triangles is FH is 6.67 units and EG is 27 units.
What is triangle?A triangle is a polygon with three sides and three angles. It is a two-dimensional shape that is commonly studied in mathematics, geometry, and other fields. The sum of the angles in a triangle is always 180 degrees, and the lengths of the sides can vary. Triangles can be classified based on the lengths of their sides and the measures of their angles. Common types of triangles include equilateral, isosceles, scalene, acute, right, and obtuse triangles. Triangles have many important properties and are used in various applications, including construction, engineering, and physics.
Here,
1. Let x be the length of FH. We have:
AB/EF = BD/FH
12/8 = 10/x
Cross-multiplying, we get:
12x = 80
x = 80/12
x ≈ 6.67
Therefore, FH ≈ 6.67.
2. Let y be the length of EG. We have:
AC/BD = FH/EG
15/9 = 5/y
Cross-multiplying, we get:
5y = 135
y = 135/5
y ≈ 27
Therefore, EG ≈ 27.
To know more about triangle,
https://brainly.com/question/28600396
#SPJ1
Make a forecast for week 3, find the error for week 4, and make a final prediction for week 7.
Use the moving average method with k = 2
Rounding correctly will help ensure you get credit for this question. Please round to 2 decimal places.
Week Time Series Moving average Error 1 30 _____ _____
2 19 _____ 5.5
3 30 _____ -------- 4 16 24.5000 -----------
5 21 23.0000 -2.00
6 25 18.5000 6.5
7 Prediction -> _____ _____
The answers are 24.50, 8.50, 23.50 respectively.
Given that we are to forecast for week 3, find the error for week 4, and make a final prediction for week 7. We are to use the moving average method with k = 2.The calculation of the moving average is shown belowWeek Time Series Moving average Error 1 30 _____ _____ 2 19 _____ 5.5 3 30 24.50 -6.50 4 16 24.50 8.50 5 21 23.00 -2.00 6 25 18.50 6.50 7 Prediction -> 23.50 -2.50The forecast for week 3 is 24.50, error for week 4 is 8.50 and final prediction for week 7 is 23.50. Thus, the answers are 24.50, 8.50, 23.50 respectively.
Learn more about Respectively
brainly.com/question/19719179
#SPJ11
Graph f(x) = ⌊x⌋ + 1 on the interval [-3,3]
Substitute the value of x from -3 to 3 in the equation and obtain the value of f(x), and plot the graph for the equation on the give interval.
What is a modulo function?A modulus function is a function that determines a number or variable's absolute value. It generates the size of the variable count. A function with absolute values is another name for it. No matter what input was provided to this function, the output is always favourable.
The function of the graph is given as f(x) = ⌊x⌋ + 1 on the interval [-3,3].
Substitute the value of x from -3 to 3 in the equation and obtain the value of f(x).
Plot the coordinates on the graph to obtain the following.
Learn more about graph here:
https://brainly.com/question/10712002
#SPJ1
The valume pf a right triangular prism is 72 cubic feet. The height of the prism is 9 feet. The triangular basevis an isosceles right triangle. What is the area of the base? 2,4,8,16 in square feet. What is the length of the edge of DF? 2,4,8,16 in feet
If the volume of a right triangular prism is 72 cubic feet, the area of the base is 2 square feet and the length of DF is approximately 2.83 feet.
To solve the problem, we can use the formula for the volume of a right triangular prism, which is:
Volume = (1/2) x base x height x length
where base is the area of the triangular base, height is the height of the prism, and length is the length of the prism.
We are given that the volume is 72 cubic feet and the height is 9 feet. Therefore, we can write:
72 = (1/2) x base x 9 x length
Simplifying this equation, we get:
base x length = 16
We are also given that the base is an isosceles right triangle. This means that the two legs of the triangle are equal, and the hypotenuse is equal to the length of one leg times the square root of 2.
Let's call the length of one leg of the triangle DF. Then, we can write:
base = (1/2) x DF x DF
Substituting this expression for base into the equation we derived earlier, we get:
(1/2) x DF x DF x length = 16
Simplifying this equation, we get:
DF x DF x length = 32
We know that the hypotenuse of the triangle is DF times the square root of 2. Since the hypotenuse is also one of the edges of the base of the prism, we can set it equal to the length of the prism:
DF x √(2) = length
Substituting this expression for length into the equation we derived earlier, we get:
DF x DF x DF x sqrt(2) = 32
Simplifying this equation, we get:
DF^3 = 16
Taking the cube root of both sides, we get:
DF = 2
Therefore, the area of the base is:
base = (1/2) x DF x DF = 2 square feet
And the length of DF is:
DF x √(2) = 2 x √(2) feet = approximately 2.83 feet.
To learn more about area click on,
https://brainly.com/question/3455913
#SPJ4
Let all of the numbers given below be correctly rounded to the number of digits shown. For each calculation, determine the smallest interval in which the result, using true instead of rounded values, must lie. (a) 1.1062+0.947 (b) 23.46 - 12.753 (c) (2.747) (6.83) (d) 8.473/0.064
An interval is a set of real numbers that contains all real numbers lying between any two numbers of the set.
For each calculation, the smallest interval in which the result, using true instead of rounded values, must lie is as follows:
(a) 1.1062+0.947 = 2.0532 ≤ true result ≤ 2.053
(b) 23.46 - 12.753 = 10.707 ≤ true result ≤ 10.708
(c) (2.747) (6.83) = 18.6181 ≤ true result ≤ 18.6182
(d) 8.473/0.064 = 132.3906 ≤ true result ≤ 132.3907
To learn more about the “smallest interval” refer to the: https://brainly.in/question/52697950
#SPJ11
Two boats are travelling away from each other in opposite directions. One boat is travelling east at the constant speed of 8 km/h and the other boat is travelling west at a different constant speed. At one point, the boat travelling east was 200 m east of the boat travelling west, but 15 minutes later they lose sight of each other. If the visibility at sea that day was 5 km, determine the constant speed of the boat travelling west
It is well documented that a typical washing machine can last anywhere between 5 to 20 years. Let the life of a washing machine be represented by a lognormal variable, Y = eX where X is normally distributed. In addition, let the mean and standard deviation of the life of a washing machine be 14 years and 2 years, respectively. [You may find it useful to reference the z table.] a. Compute the mean and the standard deviation of X. (Round your intermediate calculations to at least 4 decimal places and final answers to 4 decimal places.) b. What proportion of the washing machines will last for more than 15 years? (Round your intermediate calculations to at least 4 decimal places, "z" value to 2 decimal places, and final answer to 4 decimal places.) c. What proportion of the washing machines will last for less than 10 years? (Round your intermediate calculations to at least 4 decimal places, "z" value to 2 decimal places, and final answer to 4 decimal places.) d. Compute the 90th percentile of the life of the washing machines. (Round your intermediate calculations to at least 4 decimal places, "z" value to 3 decimal places, and final answer to the nearest whole number.)
a. The mean of X is 1.7549 and the standard deviation is 0.3536.
b. To calculate the proportion of washing machines that will last for more than 15 years, we need to use the standard normal distribution table. The z-score for 15 years is (15-14)/0.3536 = 2.822. Using the table, we find that the proportion of washing machines that will last for more than 15 years is 0.9968.
c. To calculate the proportion of washing machines that will last for less than 10 years, we need to use the standard normal distribution table. The z-score for 10 years is (10-14)/0.3536 = -2.822. Using the table, we find that the proportion of washing machines that will last for less than 10 years is 0.0032.
d. To calculate the 90th percentile of the life of the washing machines, we need to use the standard normal distribution table. The z-score for the 90th percentile is 1.28. Using the table, we find that the 90th percentile is 17 years.
To learn more about normal distribution refer :
https://brainly.com/question/29509087
#SPJ11
g company xyz know that replacement times for the quartz time pieces it produces are normally distributed with a mean of 17 years and a standard deviation of 1.7 years. find the probability that a randomly selected quartz time piece will have a replacement time less than 13.3 years?
The probability that a randomly selected quartz timepiece will have a replacement time less than 13.3 years is approximately 0.015 with a mean of 17 years and a standard deviation of 1.7 years.
What is Probability?To find the probability that a randomly selected quartz timepiece will have a replacement time of less than 13.3 years, we need to use the standard normal distribution formula which is as follows:
[tex]Z =\frac{X -μ }{σ}[/tex]
Where Z is the standard score
X is the variable value
μ is the mean
σ is the standard deviation
Given that the mean (μ) of the replacement times for the quartz timepieces is 17 years, the standard deviation (σ) is 1.7 years, and the variable value (X) we are looking for is 13.3 years.
Substitute the values into the standard normal distribution formula to get:
[tex]Z = \frac{13.3-17}{1.7} = -2.17[/tex]
Looking at the standard normal distribution table, we can find the probability of the standard score Z = -2.17 to be 0.015.
Therefore, the probability that a randomly selected quartz timepiece will have a replacement time less than 13.3 years is approximately 0.015.
Learn more about Probability here:
https://brainly.com/question/30034780
#SPJ11
Ill give brainliest for the answer
Answer:
x = 20
Step-by-step explanation:
if a line is parallel to a side of a triangle and intersects the other two sides, it divides those sides proportionally.
QR is parallel to ST and intersects the other two sides of the triangle, then
[tex]\frac{PQ}{QS}[/tex] = [tex]\frac{PR}{RT}[/tex] ( substitute values )
[tex]\frac{x}{45-x}[/tex] = [tex]\frac{16}{30-16}[/tex]
[tex]\frac{x}{45-x}[/tex] = [tex]\frac{16}{20}[/tex] ( cross- multiply )
20x = 16(45 - x)
20x = 720 - 16x ( add 16x to both sides )
36x = 720 ( divide both sides by 36 )
x = 20
how is probability determined from a continuous distribution? why is this easy for the uniform distribution and not so easy for the normal distribution?
To determine the probability of a continuous distribution we use the integral to determine it and for the normal distribution the integral is not so simple, for that reason it is simpler to use range values from tables.
How is probability determined from a continuous distribution?Probability can be determined from a continuous distribution in the following way:To compute the probability of a given interval for a continuous random variable, the area under the curve over the interval is determined. Integrals are used to calculate this area under the curve, which can be done either numerically or analytically using probability density functions.
For some distributions, such as the uniform distribution, calculating the area under the curve is straightforward. However, for other distributions, such as the normal distribution, it can be more difficult to calculate the integral analytically.
Why is this easy for the uniform distribution and not so easy for the normal distribution?The normal distribution is a continuous probability distribution that is frequently used in statistics. It is defined by its probability density function, which is a bell-shaped curve with a mean and a standard deviation.
Calculating the area under the curve for the normal distribution requires the use of integrals. Integrals are difficult to solve analytically for the normal distribution because the probability density function is not simple. However, it is relatively simple to calculate the probability for a given range of values using standard statistical tables or computer software.
See more about probability distribution at: https://brainly.com/question/23286309
#SPJ11
Draw and label a rectangle with an area of 32 square units and a perimeter of 36 units
If the area of the rectangle is 32 square units and its perimeter is 36 units, then the length and width of the rectangle will be given as 16 units and 2 units respectively.
Area is defined as the measure of a specific region on ground which is enclosed by a closed polygon figure. The area of a rectangle is given as the product of its length (l) and its width (b) . Perimeter on the other hand is the sum of all four sides of a rectangle and is given by the formula as follows:
Perimeter of rectangle = 2 (length + width)
Now its is given that Area= length x width
32 = l*b ... 1
36 = 2(l+b) ... 2
Using equation 1, we get b = 32/l. Putting this value in equation 2, we get:
36 = 2 (32/l + l)
18 = 32/l + l
⇒ l^2 - 18l + 32 = 0
Solving this quadratic equation we get,
l = 16, 2
Thus the length and width of the rectangle will be equal to 16 units and 2 units respectively or vice versa.
Learn more about quadratic equation at:
brainly.com/question/1214333
#SPJ4
Refer to complete question below:
On a separate piece of paper, draw and label rectangle with an area of 32 sq. Unit and a perimeter of 36 units. Use numbers or words to show that you are correct.
Toastmasters International cites a report by Gallup Poll that 40% of Americans fear public speaking. A student believes that less than 40% of students at her school fear public speaking. She randomly surveys 361 schoolmates and finds that 137 report they fear public speaking. Conduct a hypothesis test at the 5% level to determine if the percent at her school is less than 40%. Note: If you are using a Student's t-distribution for the problem, you may assume that the underlying population is normally distributed. (In general, you must first prove that assumption, though.)
-state the null hypothesis
-state the alternative hypothesis
- In words state what random variable P' represents
- State the distribution for the test: P'~
-what is the test statistics? z or t distribution
-What is the P value
- Explain what the P value means
- Sketch picture of the situation
- construct 95% construction interval for the true proportion
We can construct the 95% confidence interval for the true proportion. To do this, we need to calculate the margin of error, which is equal to the critical value (1.96) multiplied by the standard error (0.014). This equals 0.028.
The 95% confidence interval is then the sample proportion (0.38) plus or minus the margin of error (0.028). This is [tex](0.38 - 0.028, 0.38 + 0.028) = (0.352, 0.408).[/tex]
The test statistic in this case is the Z-statistic, as we are assuming that the underlying population is normally distributed. To conduct the hypothesis test, we must first state the null and alternative hypotheses.
Null Hypothesis (H0): The proportion of students at the school who fear public speaking is equal to or greater than 40%.
Alternative Hypothesis (H1): The proportion of students at the school who fear public speaking is less than 40%.
We must then calculate the test statistic, which is the Z-statistic in this case. To do this, we need to first calculate the sample proportion, which is the number of students who fear public speaking (137) divided by the total number of students surveyed (361). This equals 0.38. We then need to calculate the standard error of the sample proportion (SE), which is the square root of [tex](pq/n)[/tex], where p is the sample proportion (0.38) and q is the complement of the sample proportion (1-0.38 = 0.62). SE = [tex](0.38 x 0.62)/361 = 0.014.[/tex] The Z-statistic is then calculated as the difference between the sample proportion (0.38) and the population proportion (0.40) divided by the standard error [tex](0.014). Z = (0.38 – 0.40)/0.014 = -0.14.[/tex]
To conclude, we can use the Z-statistic and 95% confidence interval to test the hypothesis that the proportion of students at the school who fear public speaking is less than 40%. The Z-statistic of -0.14 falls within the critical region and the 95% confidence interval does not include 0.40, suggesting that the proportion of students at the school who fear public speaking is indeed less than 40%.
for such more questions on statistic
https://brainly.com/question/15525560
#SPJ11
D. On désire connaître la quantité de moulure dont on a besoin pour encadrer un tableau. Aire ou Périmètre
Answer:
Step-by-step explanation:
Perimeter
Pls mark me brainliest
wind speeds, represented by random variable , in , have a lognormal distribution. in other words, is normal. if , and , what value of (the standard normal rv) is associated with a wind speed of ?
Wind speeds, represented by random variable X, have a lognormal distribution. The corresponding value of the standard normal random variable (Z) is associated with a wind speed of 14.35 is 25.5
Wind speeds represented by random variable X, in miles per hour, have a lognormal distribution. In other words, log(X) is normal.
If [tex]\mu = 4.8[/tex] and [tex]\sigma = 0.4[/tex], what value of Z (the standard normal rv) is associated with a wind speed of 15 miles per hour.
The value of Z (the standard normal rv) associated with a wind speed of 15 miles per hour.
The standard score (z) of a random variable X is calculated as follows:
[tex]z = \frac{(X - \mu)}{\sigma}[/tex]
Given: μ = 4.8, σ = 0.4
Let X be a wind speed 15 mph.
To find the standard normal rv Z associated with a wind speed of 15 miles per hour, we will use the formula for calculating the standard score (z):
[tex]z = (X - \mu) /\sigma \\z = (15 - 4.8) / 0.4\\z = 25.5[/tex]
Therefore, the value of Z (the standard normal rv) associated with a wind speed of 15 miles per hour is 25.5.
Learn more about lognormal distribution here:
https://brainly.com/question/20708862
#SPJ11
in the accompanying diagram of rectangle ABCD, m<BAC=25° Find the m<ACB and m<COB
Given the triangle BOC is isosceles, the angle between the [tex]m < ACB[/tex] and [tex]m < COB[/tex] is also [tex]45^{0}[/tex].
Is a triangle 90 degrees or 180?A triangle is guaranteed to have an angle total of 180 degrees. A quadrilateral may be divided in half from each corner to form a triangle because the angle total of a parallelogram is equal to 360°. A triangle is effectively half of a parallelogram, therefore it makes sense that its angle measurements are also half. 180° is one-half of 360°.
What determines whether a triangular is AB or C?Right triangles have three sides, the hypotenuse, the two shorter sides, and the side opposite a 90o angle, which is their longest side.
The sum of the angles in triangle ABC is [tex]180^{0}[/tex], we can find m<ACB by subtracting [tex]m < BAC[/tex] and [tex]m < ABC[/tex] from [tex]180^{0}[/tex]:
[tex]m < ACB = 180^{0} - m < BAC - m < ABC[/tex]
[tex]m < ACB = 180^{0} - 25^{0} - 90^{0}[/tex]
[tex]m < ACB = 65^{0}[/tex]
Now we can find [tex]m < COB[/tex] by recognizing that triangle [tex]BOC[/tex] is isosceles (since [tex]OB = OC[/tex]), and that [tex]m < BOC[/tex] is equal to half of [tex]m < ADC[/tex]:
[tex]m < BOC = 1/2 m < ADC[/tex]
[tex]m < BOC = 1/2 (90^{0} )[/tex]
[tex]m < BOC = 45^{0}[/tex]
Therefore, [tex]m < COB[/tex] is also [tex]45^{0}[/tex], since triangle [tex]BOC[/tex]is isosceles.
To know more about triangle visit:
https://brainly.com/question/2773823
#SPJ1
Please help me and all my other questions imma fr fail 10th and I need help (Find the perimeter of a Regular Pentagon with consecutive vertices at (-3,4) and (2, 6)
Answer: 25
Step-by-step explanation:
Answer:
25
Step-by-step explanation:
An amount of money is divided among A, B and C in the ratio 4: 7:9 A receives R500 less than C. Calculate the amount that is divided.
Answer:
We know that A receives R500 less than C, so we can write:
4x = 9x - 500
Solving for x, we get:
5x = 500
x = 100
Now we can calculate the amounts received by each person:
A = 4x = 4(100) = R400
B = 7x = 7(100) = R700
C = 9x = 9(100) = R900
To check our answer, we can verify that the ratios of the amounts received by A, B, and C are indeed 4:7:9:
A:B = 400:700 = 4:7
B:C = 700:900 = 7:9
Therefore, the total amount divided is:
400 + 700 + 900 = R2000
So the amount that is divided is R2000.
Step-by-step explanation:
The total amount of money divided is R2000.
What is the ratio?Ratio is described as the comparison of two quantities to determine how many times one obtains the other. The proportion can be expressed as a fraction or as a sign: between two integers.
We are given that;
The ratio of A, B and C= 4:7:9
Now,
Let's start by assigning variables to the unknowns in the problem. Let's call the total amount of money "T". Then, if A receives 4x, B receives 7x, and C receives 9x, where "x" is some constant, we can write:
4x + 500 = C's share
We can also write an equation to represent the fact that the three shares add up to the total amount:
4x + 7x + 9x = T
Simplifying this equation, we get:
20x = T
Now we can substitute the first equation into the second equation and solve for x:
4x + 7x + (4x + 500) = 20x
15x + 500 = 20x
500 = 5x
x = 100
Now we can find the individual shares by multiplying x by the appropriate ratio factor:
A's share = 4x = 400
B's share = 7x = 700
C's share = 9x = 900
Finally, we can check that these add up to the total amount:
400 + 700 + 900 = 2000
Therefore, by the given ratio the answer will be R2000.
Learn more about the ratio here:
brainly.com/question/13419413
#SPJ2
An artist creates a cone-shaped sculpture for an art exhibit. If the sculpture is 7 feet tall and has a base with a circumference of 30. 772 feet, what is the volume of the sculpture? Use 3. 14 for π
the volume of the cone-shaped sculpture is approximately 300.7 cubic feet. To find the volume of the cone-shaped sculpture, we need to use the formula:
V = (1/3)πr^2h
where V is the volume, r is the radius of the base, h is the height of the cone, and π is the constant pi.
First, we need to find the radius of the base. The circumference of the base is given as 30.772 feet, so we can use the formula for the circumference of a circle to solve for the radius:
C = 2πr
30.772 = 2πr
r = 30.772 / (2π)
r ≈ 4.9 feet
Now we can substitute the values of r and h into the formula for the volume:
V = (1/3)π(4.9)^2(7)
V ≈ 300.7 cubic feet
Therefore, the volume of the cone-shaped sculpture is approximately 300.7 cubic feet.
It's important to note that the formula for the volume of a cone is derived from the formula for the volume of a cylinder, which is V = πr^2h. To get the formula for the volume of a cone, we imagine a cylinder with the same base and height as the cone, and then we take one-third of that volume. This is why the formula for the volume of a cone includes the factor of 1/3. The constant pi (π) is used to represent the ratio of the circumference of a circle to its diameter, and it appears in many formulas in mathematics and science that involve circles or spheres.
To know more about circumference click here:
brainly.com/question/29791396
#SPJ4
write the equation in standard form for the circle with center (5,0) passing through (5, 9/2)
The equation in standard form for the circle with center (5,0) passing through (5, 9/2) is 4x² + 4y² - 40x + 19 = 0
Calculating the equation of the circleGiven that
Center = (5, 0)
Point on the circle = (5. 9/2)
The equation of a circle can be expressed as
(x - a)² + (y - b)² = r²
Where
Center = (a, b)
Radius = r
So, we have
(x - 5)² + (y - 0)² = r²
Calculating the radius, we have
(5 - 5)² + (9/2 - 0)² = r²
Evaluate
r = 9/2
So, we have
(x - 5)² + (y - 0)² = (9/2)²
Expand
x² - 10x + 25 + y² = 81/4
Multiply through by 4
4x² - 40x + 100 + 4y² = 81
So, we have
4x² + 4y² - 40x + 19 = 0
Hence, the equation is 4x² + 4y² - 40x + 19 = 0
Read more about circle equation at
https://brainly.com/question/1506955
#SPJ1
I’m a bit stuck please help me out
On solving the question we can say that Therefore, the solutions to the inequality given inequality are: x < 4 or x > 6.
What is inequality?An inequality in mathematics is a relationship between two expressions or values that are not equal. Imbalance therefore leads to inequality. An inequality establishes a connection between two values that are not equal in mathematics. Equality is different from inequality. The inequality sign () is most commonly used when two values are not equal. Various inequalities are used to contrast values, no matter how small or large. Many simple inequalities can be solved by changing both sides until only variables remain. But many things contribute to inequality.
two inequalities
4x - 6 < 10
4x < 16
x < 4
2x - 4 > 8
2x > 12
x > 6
Therefore, the solutions to the given inequality are:
x < 4 or x > 6.
To know more about inequality visit:
https://brainly.com/question/29914203
#SPJ1
let tan0= 3/4 and 0 be in Q3
Choose all answers that are correct
Answer:
Correct choices
[tex]\csc (\theta) = - \dfrac{5}{3} \quad \quad \text{2nd option}\\\\\cot(\theta) = \dfrac{4}{3} \quad \quad \text{3rd option}\\\\\cos(\theta) = -\dfrac{4}{5} \quad \quad \text{4th option}\\\\[/tex]
Step-by-step explanation:
[tex]\text{If \;$ \tan\theta = \dfrac{3}{4} $}} \\\\\text{then }\\\theta = \tan^{-1} \left(\dfrac{3}{4}\right)\\\\= 36.87^\circ \text{ in Q1}\\[/tex]
But since tan θ is periodic it will also be 3/4 in Q3 which is 180° + 36.87 = 216.87°
sin θ is negative in Q3 with sin(216.87) = - 3/55. There are 12 drinks in a pack. Sally Took 3/4 of these drinks for her party How many did she take?
Answer:
9
Step-by-step explanation:
To find the answer to this question, we have to find 3/4 of 12
To do this, we need to do 12 divide by 4, then that answer multiplied by 3...
12 ÷ 4 = 33 × 3 = 9This means that she took 9 drinks!
Hope this helps, have a lovely day! :)
Answer:
9
Step-by-step explanation:
[tex] multiply \: \\ = \frac{3}{4} \times 12[/tex]
[tex] = 9[/tex]
Therefore, sally took 9 drink for her party.
Pls like and mark as brainliest if it helps!
Find the perimeter of each of the following
a] a square of side 4 cm
b] a rectangle of length 5 cm and breath 4 cm
c] a triangle with sides 11cm 7cm and 9 cm
a) The perimeter of square is 16 cm
b) The perimeter of rectangle is 18 cm
c) The perimeter of triangle is 27 cm
a) The perimeter of a square with side length 4 cm can be found by adding the length of all four sides. Since all sides of a square are equal, the perimeter is 4 times the length of a side. Therefore, the perimeter of a square of side 4 cm is:
Perimeter = 4 x 4 cm = 16 cm
b) The perimeter of a rectangle with length 5 cm and breadth 4 cm can be found by adding twice the length and twice the breadth of the rectangle. Therefore, the perimeter of a rectangle of length 5 cm and breadth 4 cm is:
Perimeter = 2 x (length + breadth)
Perimeter = 2 x (5 cm + 4 cm)
Perimeter = 2 x 9 cm
Perimeter = 18 cm
c) The perimeter of a triangle with sides 11 cm, 7 cm, and 9 cm can be found by adding the length of all three sides. Therefore, the perimeter of a triangle with sides 11 cm, 7 cm, and 9 cm is:
Perimeter = 11 cm + 7 cm + 9 cm
Perimeter = 27 cm
Learn more about perimeter here
brainly.com/question/18181072
#SPJ4
Can someone please help me with this?
According to the given coordinate the value of f(x) is -6, 0, 3, 6, 12.
What are equations?An equation is a mathematical statement that indicates that two expressions are equal. It typically contains variables, which are symbols that represent unknown values, and constants, which are values that are known. Equations are used to describe relationships between quantities and to solve problems by finding the values of variables that satisfy the equation. For example, the equation 2x + 3 = 7 is a statement that the sum of two times x and 3 is equal to 7, and we can solve for x by subtracting 3 from both sides and dividing by 2 to obtain x = 2
According to the given information:Given value is f(x) = 3x
now value of x is given in the table.
If value of x is -2 then value of f('x) will be -6
If value of x is 0 then value of f('x) will be 0
If value of x is 1 then value of f('x) will be 3
If value of x is 2 then value of f('x) will be 6
If value of x is 4 then value of f('x) will be 12
Therefore, according to the given coordinate the value of f(x) is -6, 0, 3, 6, 12.
To know more about equations visit :
https://brainly.com/question/22688504
#SPJ1
On a snow day, Moussa created two snowmen in his backyard. Snowman A was built to a height of 59 inches and Snowman B was built to a height of 39 inches. The next day, the temperature increased and both snowmen began to melt. At sunrise, Snowman A's height decrease by 9 inches per hour and Snowman B's height decreased by 4 inches per hour. Let � A represent the height of Snowman A � t hours after sunrise and let � B represent the height of Snowman B � t hours after sunrise. Write an equation for each situation, in terms of � , t, and determine the number of hours after sunrise when both snowmen have an equal height.
Answer:
Step-by-step explanation:
Both snowmen will have an equal height after 4 hours after sunrise.
To understand the reasoning behind the equations and solutions, we can break down the problem into several steps.
First, we are given the initial heights of Snowman A and Snowman B, 59 and 39 inches, respectively.
Next, we are told that the height of Snowman A decreases by 9 inches per hour and the height of Snowman B decreases by 4 inches per hour. This means that after t hours, the height of Snowman A will be 59 - 9t and the height of Snowman B will be 39 - 4t.
To find the number of hours after sunrise when both snowmen have an equal height, we need to set A = B and solve for t. This gives us the equation:
59 - 9t = 39 - 4t
Solving for t, we get:
20 = 5t
t = 4
To learn more about height follow the link:
https://brainly.com/question/29117133
#SPJ1
1. The measure of an angle in standard position is given. Find two positive angles and two negative angles that are coterminal with the 190∘. (Enter your answers as a comma-separated list.)
2. The measure of an angle in standard position is given. Find two positive angles and two negative angles that are coterminal with the 5π/4. (Enter your answers as a comma-separated list.)
The solutions are:5π/4 + 2π = 13π/45π/4 - 2π = -3π/45π/4 + 4π = 21π/45π/4 - 4π = -11π/4
1. Two positive angles and two negative angles that are coterminal with the 190° are:550°, -170°, 950°, -410°Explanation:An angle in standard position has its vertex at the origin and its initial side is on the positive x-axis. A coterminal angle is formed when two angles share the same terminal side. Thus, the two angles have a difference that is a multiple of 360°. To find two positive angles and two negative angles that are coterminal with the 190°, we can add or subtract any multiple of 360° to it. Thus, the solutions are:190° + 360° = 550°190° - 360° = -170°190° + 2(360°) = 950°190° - 2(360°) = -410°2. Two positive angles and two negative angles that are coterminal with the 5π/4 are:13π/4, -3π/4, 21π/4, -11π/4Explanation:To find two positive angles and two negative angles that are coterminal with the angle 5π/4, we can add or subtract any multiple of 2π to it. Thus, the solutions are:5π/4 + 2π = 13π/45π/4 - 2π = -3π/45π/4 + 4π = 21π/45π/4 - 4π = -11π/4
Learn more about Solutions
brainly.com/question/1616939
#SPJ11
Simplify to an expression involving a single trigonometric function with no fractions.
cos(−x)+tan(−x)sin(−x)
Sec x is the simplified expression cos(−x)+tan(−x)sin(−x) involving a single trigonometric function with no fractions.
The functions of an angle in a triangle are known as trigonometric functions, commonly referred to as circular functions. In other words, these trig functions provide the relationship between a triangle's angles and sides. There are five fundamental trigonometric functions: sine, cosine, tangent, cotangent, secant, and cosecant.
The Given expression is
cos(−x)+tan(−x)sin(−x)
Now,
cos(−x) + tan(−x)sin(−x)
= cos x + (- tan x) (- sin x)
= cos x + tan x * sin x
= cos x + (sin x / cos x) * sin x
= (cos²x + sin²x) / cos x ( As sin²x + cos²x = 1)
= 1/ cos x
= sec x (As sec x = 1/cos x)
Learn more about Trigonometric Functions here: brainly.com/question/22986150
#SPJ4
Find the circumference and the area of a circle with radius 7 yards use the value 3.14 for pi 
Answer:
circumference=43.96 yd
Area=153.86 yd^2
Step-by-step explanation:
c=2pi r
c=2x3.14x7
c=43.96 yd
area=pi r^2
Area=3.14x7^2
Area=153.86 yd^2
8hr/2days=28hr/?days