Explanation:
volume = πR²h/3
= πx35²x50/3
= 192325/3
= 64166.725
number of layers n = 50mm/0.05
n = 1000layers
average volume = 64166.725/1000
= 64.167mm³
average area = 64.167/0.05
= 1283.34mm²
average time = 1283.34/900mm x 0.22
= 6.48
6.48 + 15 seconds
= 21.48 seconds
time required = 1000x21.48
= 21480 seconds
convert to minutes
21480/60
= 358 minutes
21480/3600
= 5.967 hours
what is the answer What will finally break the internet?
A hot brass plate is having its upper surface cooled by impinging jet of air at temperature of 15°C and convection heat transfer coefficient of 220 W/m^2•K. The 10-cm thick brass plate (rho = 8530 kg/m^3, cp = 380 J/kg•K, k = 110 W/m•K, and α = 33.9×10^–6 m^2/s) has a uniform initial temperature of 900°C, and the bottom surface of the plate is insulated.
Required:
Determine the temperature at the center plane of the brass plate after 3 minutes of cooling.
Answer:
809.98°C
Explanation:
STEP ONE: The first step to take in order to solve this particular Question or problem is to find or determine the Biot value.
Biot value = (heat transfer coefficient × length) ÷ thermal conductivity.
Biot value = (220 × 0.1)÷ 110 = 0.2.
Biot value = 0.2.
STEP TWO: Determine the Fourier number. Since the Biot value is greater than 0.1. Tis can be done by making use of the formula below;
Fourier number = thermal diffusivity × time ÷ (length)^2.
Fourier number = (3 × 60 × 33.9 × 10^-6)/( 0.1)^2 = 0.6102.
STEP THREE: This is the last step for the question, here we will be calculating the temperature of the center plane of the brass plate after 3 minutes.
Thus, the temperature of the center plane of the brass plane after 3 minutes = (1.00705) (0.89199) (900- 15) + 15.
= > the temperature of the center plane of the brass plane after 3 minutes = 809.98°C.
What is one advantage corporations have over other types of businesses
Water that has evaporated returns to earth as
Answer:
rain
Explanation:
evaoration causes clouds
clouds condense and rain
Answer:
rain
Explanation:
I need help with online lab
Answer:
I believe on the fist question it power rationg
in software engineering how do you apply design for change?
Answer:
it is reducely very iloretable chance for a software engineer to give an end to this question