At 7:30 a.m., the temperature was -4°F. By 7:32 a.m., the temperature was 45 °F. By 9:00 a.m. the same day, the temperature was 54°F. By 9:27 a.m., the temperature was -4°F.



How many degrees did the temperature change each minute from 9:00 to 9:27?



Make sure to show whether the change was positive or negative.​

Answers

Answer 1

Given data:At 7:30 a.m., the temperature was -4°F.By 7:32 a.m., the temperature was 45 °F.By 9:00 a.m. the same day, the temperature was 54°F.By 9:27 a.m., the temperature was -4°F.

We are to find out the degrees did the temperature change each minute from 9:00 to 9:27.The temperature change each minute from 9:00 a.m. to 9:27 a.m. is -0.6°F.

The formula used to find the temperature change per minute is:Difference in temperature/change in minutes[tex]2`(-4 - 54) / 27 - 9 = -58 / 18 = -3.2[/tex] (rounded to the nearest hundredth)`The answer is rounded to the nearest hundredth and expressed as -0.6°F which is negative.

To know more about the word temperature visits :

https://brainly.com/question/15267055

#SPJ11


Related Questions

In each of the following situations, explain what is wrong and why.
a. The null hypothesis H0: β3 = 0 in a multiple regression involving three explanatory variables implies there is no linear association between x3 and y.

Answers

The issue with the statement "The null hypothesis H0: β3 = 0 in a multiple regression involving three explanatory variables implies there is no linear association between x3 and y" is that the null hypothesis H0: β3 = 0 is testing whether there is a statistically significant linear relationship between the third explanatory variable (x3) and the dependent variable (y),

The null hypothesis H0: β3 = 0 in a multiple regression involving three explanatory variables implies that the coefficient of the third variable (x3) is zero, meaning that x3 has no effect on the dependent variable (y). However, this does not necessarily imply that there is no linear association between x3 and y.

In fact, there could still be a linear association between x3 and y, but the strength of that association may be too weak to be statistically significant.

Therefore, the null hypothesis H0: β3 = 0 should not be interpreted as a statement about the presence or absence of linear association between x3 and y. Instead, it only pertains to the specific regression coefficient of x3.

Know more about null hypothesis here:

https://brainly.com/question/4436370

#SPJ11

Pease help with this question

Answers

The weight of liquid in the hemisphere is 129408.2 pounds.

How to find the total weight of liquid in the hemisphere?

The tank is in the shape of an hemisphere and has a diameter of 18 feet. If the liquid fills the tank, it has a density of 84.8 pounds per cubic feet.

Therefore, total weight of the liquid can be found as follows:

density  = mass / volume

Therefore,

volume of the liquid in the hemisphere tank = 2 / 3 πr³

Therefore,

r = 18 / 2 = 9 ft

volume of the liquid in the hemisphere tank = 2 / 3 × 3.14 × 9³

volume of the liquid in the hemisphere tank = 4578.12 / 3

volume of the liquid in the hemisphere tank =  1526.04 ft³

Hence,

weighty of the liquid in the tank = 526.04 × 84.8 = 129408.192

weighty of the liquid in the tank = 129408.2 pounds

learn more on hemisphere here:https://brainly.com/question/13488583

#SPJ1

Scott is using a 12 foot ramp to help load furniture into the back of a moving truck. If the back of the truck is 3. 5 feet from the ground, what is the horizontal distance from where the ramp reaches the ground to the truck? Round to the nearest tenth. The horizontal distance is

Answers

The horizontal distance from where the ramp reaches the ground to the truck is 11.9 feet.

Scott is using a 12-foot ramp to help load furniture into the back of a moving truck.

If the back of the truck is 3.5 feet from the ground,

Round to the nearest tenth.

The horizontal distance is 11.9 feet.

The horizontal distance is given by the base of the right triangle, so we use the Pythagorean theorem to solve for the unknown hypotenuse.

c² = a² + b²

where c = 12 feet (hypotenuse),

a = unknown (horizontal distance), and

b = 3.5 feet (height).

We get:

12² = a² + 3.5²

a² = 12² - 3.5²

a² = 138.25

a = √138.25

a = 11.76 feet

≈ 11.9 feet (rounded to the nearest tenth)

The correct answer is 11.9 feet.

To know more about  distance,visit:

https://brainly.com/question/13034462

#SPJ11

suppose when you did this this calculation you found the error to be too large and would like to limit the error to 1000 miles. what should my sample size be?

Answers

A sample of at least 62 flights to limit the error to 1000 miles with 95% confidence.

To determine the required sample size to limit the error to 1000 miles, we need to use the formula for the margin of error for a mean:

ME = z* (s / sqrt(n))

Where ME is the margin of error, z is the z-score for the desired level of confidence, s is the sample standard deviation, and n is the sample size.

Rearranging this formula to solve for n, we get:

n = (z* s / ME)^2

Since we do not know the population standard deviation, we can use the sample standard deviation as an estimate. Assuming a conservative estimate of s = 4000 miles, and a desired level of confidence of 95% (which corresponds to a z-score of 1.96), we can plug these values into the formula to get:

n = (1.96 * 4000 / 1000)^2 = 61.46

Rounding up to the nearest whole number, we get a required sample size of 62. Therefore, we need to take a sample of at least 62 flights to limit the error to 1000 miles with 95% confidence.

Learn more about confidence here

https://brainly.com/question/20309162

#SPJ11

Does anyone know the answer?
Mathematics question:

A school dedicated 20% of the courtyard area for students to start a garden. The students want to know how much of the 950-square-foot space they will be able to use.​

Answers

The part of 950 foot² space the students can use is,

⇒ 190 foot²

Since,

Suppose the value of which a thing is expressed in percentage is "a'

Suppose the percent that considered thing is of "a" is b%

Then since percent shows per 100 (since cent means 100), thus we will first divide the whole part in 100 parts and then we multiply it with b so that we collect b items per 100 items(that is exactly what b per cent means).

Thus, that thing in number is

a x b / 100

Students can use 20% of 950-sq.foot.

Now, 20% of 950-sq.-foot is derived as:

= 20 x 950/100

= 190 foot²

Thus, the part of 950 foot² space the students can use is: 190 foot².

Learn more about percentage here:

brainly.com/question/11549320

#SPJ1

Find the coordinates of the points of intersection of the line
5x + 6y = 30 and the circle
x^2+ y^2 = 25. Round your answer to the nearest tenth.

Answers

The coordinates of the intersection of  the line and the circle are approximately (0, 5) and (4.9, -0.2), rounded to the nearest tenth.  

To find the coordinates of the point of intersection of a line and a circle, we must solve a system of equations formed by the equation of a line  and the equation of a circle.

First, we solve the linear equation 5x 6y = 30 for

y:  6 years = 30-5x

y = (30-5x)/6

Now we substitute this expression for y in the equation of the circle,

Expanding and simplifying the equation, we get:

Multiplying both sides by 36 to eliminate the denominator gives:

Calculating x, we get:

x(61x - 300) = 0

x = 0 or x = 300/61

If x = 0,  substituting the line into the equation  gives  y = 5, so one point of intersection  is (0, 5).  

If x = 300/61, replacing the row in the equation  gives  y = (30 - 5(300/61))/6, which simplifies to y = -10/61.

Therefore, the second intersection  is (300/61, -10/61). Thus, the coordinates of the point of intersection of the line and the circle are approximately (0, 5) and (4.9, -0.2), rounded to the nearest tenth.

For more question on coordinates visit:

https://brainly.com/question/31293074

#SPJ8

A manufacturer of video game systems knows that 1 out of every 37 systems will be manufactured with some sort of erot
if the manufacturer tests 123 of these systems at random before they leave the factory what is the probability in terms of
percent chance that none of these systems are defective (round your answer to the nearest hundred)

Answers

The probability, rounded to the nearest hundred, is approximately 66.5%. This means that there is a 66.5% chance that none of the 123 tested video game systems will be defective.

The probability that a video game system will be manufactured with a defect is 1/37. Therefore, the probability that a system will not be defective is 1 - (1/37), which simplifies to 36/37.

To find the probability that none of the 123 tested systems are defective, we can multiply the probability of each individual system being non-defective together.

Probability of none of the systems being defective = (36/37) * (36/37) * ... * (36/37) [123 times]

Using this formula, we can calculate the probability.

Probability = (36/37)^123 ≈ 0.665

To convert this probability to a percentage, we multiply by 100.

Probability as a percent = 0.665 * 100 ≈ 66.5%.

For such more questions on Probability:

https://brainly.com/question/30390037

#SPJ11

Simplify the following trigonometric expression. sin(z)+cos(-z)+sin(-z) 1. sin z 2. cos z 3. 2sin z- cosz 4. 2sin z

Answers

The simplified trigonometric expression is cos(z). We did not get any of the answer choices provided, as they were all incorrect.

Use the trigonometric identities for sine and cosine of negative angles.

Recall that sin(-x) = -sin(x) and cos(-x) = cos(x).

Using these identities, we can simplify the given expression:
sin(z) + cos(-z) + sin(-z)
= sin(z) + cos(z) + (-sin(z))
= sin(z) - sin(z) + cos(z)
= cos(z)

Therefore, the simplified trigonometric expression is cos(z). We did not get any of the answer choices provided, as they were all incorrect.

Know more about trigonometric expression here:

https://brainly.com/question/29059853

#SPJ11

Please help i dont understand?

Answers

By using trigonometry, the length of n is,

⇒ n = 5.2

We have to given that;

A triangle is shown in image.

Now, We can formulate by using trigonometry;

⇒ tan 38° = n / 6.7 cm

⇒ 0.7812 = n / 6.7

⇒ n = 0.7812 × 6.7

⇒ n = 5.234

⇒ n = 5.2

Thus, By using trigonometry, the length of n is,

⇒ n = 5.2

Learn more about the triangle visit;

brainly.com/question/1058720

#SPJ1

Customers are used to evaluate preliminary product designs. In the past, 90% of highly successful products received good reviews, 80% of moderately successful products received good reviews and 5% of poor products received good reviews. In addition, 50% of products have been highly successful, 30% of have been moderately successful and 20% have been poor products. If a new design attains a good review, what is the probability that it is a poor product

Answers

The probability that it is a poor product given that it received a good review is 0.0148.

Let's solve the problem with Baye's theorem: Baye's theorem is used to find the probability of an event happening, based on the probability of another event that has already happened. It is expressed as P(A/B)= P(B/A) * P(A)/P(B).In this case, the events are:
A: The product is poor.
B: The product receives a good review.
P(A/B) is the probability that the product is poor, given that it receives a good review. P(B/A) is the probability that the product receives a good review, given that it is poor. P(A) is the probability that a product is poor. P(B) is the probability that a product receives a good review. Let's find out the probabilities for each event:

P(A) = 0.20P(B) = P(B/A) * P(A) + P(B/M) * P(M) + P(B/H) * P(H)

= 0.05 * 0.20 + 0.80 * 0.30 + 0.90 * 0.50

= 0.675P(B/A) = 0.05P(A/B) = P(B/A) * P(A)/P(B)

= (0.05 * 0.20)/0.675 = 0.0148

The probability that a new design attains a good review is 0.675. The probability that it is a poor product given that it received a good review is 0.0148.

Therefore, the probability that it is a poor product given that it received a good review is 0.0148.

To know more about probability visit:

https://brainly.com/question/31828911

#SPJ11

1. The diameter of the base of a cylinder is 18 cm and its height is 2.5 times its base
radius. Find the volume of the cylinder.

Answers

Answer:

The radius of the base of the cylinder is half of its diameter, so the radius is:

r = 18 cm / 2 = 9 cm

The height of the cylinder is 2.5 times the radius:

h = 2.5r = 2.5(9 cm) = 22.5 cm

The volume of a cylinder is given by the formula:

V = πr^2h

Substituting the values we have found, we get:

V = π(9 cm)^2(22.5 cm)

V = π(81 cm^2)(22.5 cm)

V = 1822.5π cm^3

So the volume of the cylinder is approximately 5713.77 cubic centimeters, or 5713.77 cm^3.

Step-by-step explanation:

Determine whether the following statement is true or false.
A parabola with focal diameter 3 is narrower than a parabola with focal diameter 2.Choose the correct answer below.OA. The statement is false because the focal diameter determines the size of the opening of the parabola. The larger the focal diameter, the wider the parabola.
OB. The statement is false because the size of the opening of the parabola depends upon the distance between the vertex and the focus.
OC. The statement is true because the focal diameter determines the size of the opening of the parabola. The larger the focal diameter, the narrower the parabola.
OD. The statement is false because the size of the opening of the parabola depends on the position of the vertex and the focus on the coordinate system.

Answers

The answer is : OA. The statement is false because the focal diameter determines the size of the opening of the parabola. The larger the focal diameter, the wider the parabola.

The statement is false because the size of the opening of a parabola is determined by the distance between its focus and directrix, not by the focal diameter. The focal diameter is defined as the distance between the two points on the parabola that intersect with the axis of symmetry and lie on opposite sides of the vertex. It is twice the distance between the focus and vertex.

In a standard parabolic equation of the form y = ax^2 + bx + c, the coefficient a determines the "width" of the parabola. If a is positive, the parabola opens upwards, and if a is negative, the parabola opens downwards. The larger the absolute value of a, the narrower the parabola.

Therefore, a parabola with a larger focal diameter actually has a wider opening, since it corresponds to a smaller absolute value of a in the standard equation. Hence, the statement "A parabola with focal diameter 3 is narrower than a parabola with focal diameter 2" is false.

To know more about parabola refer here:

https://brainly.com/question/31142122?#

SPJ11

.A random sample of 70 observations produced a mean of x=31.5x from a population with a normal distribution and a standard deviation σ=2.45
(a) Find a 95% confidence interval for μ
(b) Find a 99% confidence interval for μ
c) Find a 90% confidence interval for μ

Answers

(a) The 95% confidence interval for μ is (30.8, 32.2). (b) The 99% confidence interval for μ is (30.3, 32.7). (c) The 90% confidence interval for μ is (31.0, 32.0).

(a) To find a 95% confidence interval for μ, we can use the formula:

CI = x ± z(α/2) * σ/√n

Where:

x is the sample mean (31.5 in this case)

z(α/2) is the z-score corresponding to the desired confidence level (0.025 for a 95% confidence level)

σ is the population standard deviation (2.45 in this case)

n is the sample size (70 in this case)

Plugging in the numbers, we get:

CI = 31.5 ± 1.96 * 2.45/√70

CI = (30.8, 32.2)

So the 95% confidence interval for μ is (30.8, 32.2).

(b) To find a 99% confidence interval for μ, we can use the same formula but with a different z-score. For a 99% confidence level, z(α/2) is 0.005. Plugging in the numbers, we get:

CI = 31.5 ± 2.58 * 2.45/√70

CI = (30.3, 32.7)

So the 99% confidence interval for μ is (30.3, 32.7).

(c) To find a 90% confidence interval for μ, we can use the same formula but with a different z-score. For a 90% confidence level, z(α/2) is 0.05. Plugging in the numbers, we get:

CI = 31.5 ± 1.645 * 2.45/√70

CI = (31.0, 32.0)

So the 90% confidence interval for μ is (31.0, 32.0).

Learn more about Confidence interval:

https://brainly.com/question/15712887

#SPJ11

Divide:
78.84) 6575.256 how do you do this This is homework quick emergency

Answers

Answer:

Step-by-step explanation:

0.01199040767

this is the answer I don't know if this helps

Find the x-coordinate of the center of mass of the lamina that occupies the region D and has the given density function p(x,y) = x + y Dis triangular region with vertices (0,0), (2, 1), (0.3)

Answers

The x-coordinate of the center of mass of the given lamina is 0.8.

The center of mass of a lamina is given by the equations:

[tex]Xc[/tex] = (1/M) ∬(D) x[tex]p(x,y) dA[/tex] and [tex]Yc[/tex] = (1/M) ∬(D) y [tex]p(x,y) dA[/tex]

where M is the total mass of the lamina and D is the region occupied by the lamina. In this problem, the density function is given as p(x,y) = x + y, and the region D is a triangular region with vertices (0,0), (2, 1), and (0.3).

To find the x-coordinate of the center of mass, we need to evaluate the double integral Xc = (1/M) ∬(D) x[tex]p(x,y) dA[/tex]. First, we need to find the mass of the lamina. This can be done by integrating the density function over the region D:

M = ∬(D) [tex]p(x,y) dA[/tex] = ∫(0,1) ∫(0,2-0.5y) (x+y) dx dy = 1.45

Now we can evaluate the double integral for [tex]Xc[/tex]:

[tex]Xc[/tex] = (1/M) ∬(D) x p(x,y) dA = ∫(0,1) ∫(0,2-0.5y) [tex]x(x+y)dydx =[/tex] 0.8

Therefore, the x-coordinate of the center of mass of the given lamina is 0.8.

Learn more about vertices here:

https://brainly.com/question/29154919

#SPJ11

Three resistors in parallel have an equivalent resistance of 10 ohms. Two of the resistors have resistances of 40 ohms and 30 ohms. What is the resistance of the third resistor?

Answers

the resistance of the third resistor is 24 Ohms

How to determine the value

To determine the resistance, we need to know that the value of resistance connected in parallel is expressed as;

1/Rt  = 1/R1 + 1/R2 + 1/R3

Now, substitute the values of the resistance, we have that;

1/10 = 1/40 + 1/30 + 1/x

Find the lowest common factor, we have;

1/x = 1/10 - 1/40 - 1/30

1/x =  12 - 3 - 4  /120

Subtract the values of the numerators, we get;

1/x = 5/120

Now, cross multiply the values, we get;

5x = 120

Divide both sides by the coefficient of x, we get;

x = 120/5

x = 24 Ohms

Learn more about resistors at: https://brainly.com/question/24858512

#SPJ1

Dot plot 1 is the top plot. Dot plot 2 is the bottom plot.

According to the dot plots, which statement is true?

Responses

A. The mode of the data in dot plot 1 is less than the mode of the data in dot plot 2.


B. The range of the data in dot plot 1 is less than the range of the data in dot plot 2.


C. The median of the data in dot plot 1 is greater than the median of the data in dot plot 2.


D. The mean of the data in dot plot 1 is greater than the mean of the data in data plot 2.

Answers

Using the dot plot, it is found that the correct statement is given by:

The mode of the data in dot plot 1 is less than the mode of the data in dot plot 2.

We have,

The dot plot shows the number of times each measure appears in the data-set.

What is the mode of a data-set?

It is the value that appears the most in the data-set. Hence, using the mode concept along with the dot plot, it is found that:

The mode of dot plot 1 is 15.

The mode of dot plot 2 is 16.

Hence, the correct option is:

The mode of the data in dot plot 1 is less than the mode of the data in dot plot 2.

More can be learned about dot plots at

brainly.com/question/24912483

#SPJ1

A researcher collated data on Americans’ leisure time activities. She found the mean number of hours spent watching television each weekday to be 2. 7 hours with a standard deviation of 0. 2 hours. Jonathan believes that his football team buddies watch less television than the average American. He gathered data from 40 football teammates and found the mean to be 2. 3. Which of the following are the correct null and alternate hypotheses? H0: Mu = 2. 7; Ha: Mu less-than 2. 7 H0: Mu not-equals 2. 7; Ha: Mu = 2. 3 H0: Mu = 2. 7; Ha: Mu not-equals 2. 7 H0: Mu = 2. 7; Ha: Mu greater-than-or-equal-to 2. 3.

Answers

The researcher collated data on Americans' leisure time activities. She found the mean number of hours spent watching television each weekday to be 2.7 hours with a standard deviation of 0.2 hours.

Jonathan believes that his football team buddies watch less television than the average American. He gathered data from 40 football teammates and found the mean to be 2.3. H0: μ = 2.7; Ha: μ < 2.7 is the correct null and alternative hypotheses.

What is a hypothesis?A hypothesis is a statement that can be tested to determine its validity. A null hypothesis and an alternate hypothesis are the two types of hypotheses. The null hypothesis is typically the statement that is believed to be correct or true. The alternate hypothesis is the statement that opposes the null hypothesis. Researchers use hypothesis tests to determine the likelihood of the null hypothesis being correct.

Know more about researcher collated data here:

https://brainly.com/question/31597598

#SPJ11

The probability of Alex winning a game of chess with his high school classmates is 0.38, and the probability of his twin sister, Alice, winning a game of chess is 0.45 . Assuming that either one winning a game of chess with their classmates is independent of the other, what is the probability that at least one of them will win the next game of chess with their classmates? Note: If your final answer has up to four decimal places, enter your answer in the box below without rounding it. But if your final answer has more than four decimal places, then round the number to four decimal places.

Answers

Answer:

0.17

Step-by-step explanation:

0.38 + 0.45 = 0.83

100 - 83 = 17

1.00 - 0.83 = 0.17

probability is out of 100

The probability that at least one of them will win the next game of chess is 0.7645 or approximately 0.7645.

To find the probability that at least one of them will win the next game of chess, we need to find the probability that either Alex or Alice or both of them will win.

Let A be the event that Alex wins and B be the event that Alice wins. The probability of at least one of them winning is:

P(A or B) = P(A) + P(B) - P(A and B)

Since Alex and Alice are playing separately, we can assume that the events of Alex winning and Alice winning are independent of each other. Therefore, P(A and B) = P(A) * P(B)

Substituting the given probabilities, we get:

P(A or B) = 0.38 + 0.45 - (0.38 * 0.45)

= 0.7645

Therefore, the probability that at least one of them will win the next game of chess is 0.7645 or approximately 0.7645. This means that there is a high likelihood that at least one of them will win.

To know more about probability, refer here:

https://brainly.com/question/30034780#

#SPJ11

The circle (x−5)^2 + (y−3)^2 = 16 can be drawn with parametric equations. Assume the circle is traced clockwise as the parameter increases.
If x=5+4cost
then y= __

Answers

Given the circle equation: (x-5)^2 + (y-3)^2 = 16

Since we have the parametric equation for x: x = 5 + 4cos(t), we need to find the parametric equation for y.

To do this, let's substitute the given parametric equation for x into the circle equation:

(5 + 4cos(t) - 5)^2 + (y - 3)^2 = 16

Simplifying, we get:

(4cos(t))^2 + (y - 3)^2 = 16

Now, since we are going clockwise, we will use -sin(t) instead of sin(t) for the parametric equation for y:

(4cos(t))^2 + (3 - 4sin(t) - 3)^2 = 16

Simplifying, we get:

(4cos(t))^2 + (-4sin(t))^2 = 16

Now, we know that (cos(t))^2 + (sin(t))^2 = 1, so:

(4^2)((cos(t))^2 + (sin(t))^2) = 16
16(1) = 16

This equation holds true, so our parametric equation for y is:

y = 3 - 4sin(t)

Therefore, the complete parametric equations for the circle traced clockwise are:

x = 5 + 4cos(t)
y = 3 - 4sin(t)

To know more about circle visit:

https://brainly.com/question/24375372

#SPJ11

Solve this t(x, y, z) = 75 (1- z/105)^e^-(x^2 y^2 ).

Answers

The solved equation is:
t(x, y, z) = 75(1 - z/105)^e^-(x^2 y^2)

To solve the equation t(x, y, z) = 75(1 - z/105)^e^-(x^2 y^2), follow these steps:

Repeat the question in your answer.
You want to solve the equation t(x, y, z) = 75(1 - z/105)^e^-(x^2 y^2).

Identify the terms in the equation.
The terms in the equation are: t(x, y, z), 75, (1 - z/105), e, (x^2 y^2), and -.

Explain the equation.
The equation represents a mathematical function t(x, y, z) involving three variables (x, y, and z) and the constant e (Euler's number, approximately 2.71828).

Solve for t(x, y, z).
As the equation is already given in the form of t(x, y, z), there's no need to manipulate it further.

The solved equation is:
t(x, y, z) = 75(1 - z/105)^e^-(x^2 y^2)

This equation can be used to find the value of t(x, y, z) for any given values of x, y, and z.

To learn more about equations visit: https://brainly.com/question/2972832

#SPJ11

The shortest side of a right triangle measures inches. One angle of the triangle measures . What is the length, in inches, of the hypotenuse of the triangle?


A. 6[tex]\sqrt{3}[/tex]

B.3

C.6

D6[tex]\sqrt{2}[/tex]

Answers

The length of the hypotenuse of the triangle is 6 inches, which is option D.

In order to find the hypotenuse of a right triangle, we use the Pythagorean theorem which is `a²+b²=c²`where `a` and `b` are the legs of the triangle and `c` is the hypotenuse. Here, the question mentions that the shortest side of the right triangle measures 3 inches and one angle of the triangle measures 60 degrees. Therefore, we need to find the length of the other leg and hypotenuse.The trigonometric ratios of a 60 degree angle are:

`sin 60 = √3/2`, `cos 60 = 1/2`, `tan 60 = √3`.

Now, we have the value of sin 60 which is `√3/2`. We can use it to find the other leg of the right triangle as follows:

Let `x` be the other leg.So, `sin 60° = opposite / hypotenuse => √3/2 = x / c`

Multiplying both sides by `c`, we get: `x = c(√3/2)`

Now, using the Pythagorean theorem, we can write:

`3² + (c(√3/2))² = c²`9 + 3/4 c² = c²

Multiplying both sides by 4 gives:

36 + 3c² = 4c²Simplifying: c² = 36 ⇒ c = 6

Thus, the length of the hypotenuse of the triangle is 6 inches, which is option D.

To know more about hypotenuse visit:

https://brainly.com/question/16893462

#SPJ11

Using Matlab, find an approximation to√3 correct to within 10−4 using the Bisection method(Hint: Consider f(x) = x2 −3.) Please show code and answer question.Pseudo Code for Bisection Method:Given [a,b] containing a zero of f(x);tolerance = 1.e-7; nmax = 1000; itcount = 0; error = 1;while (itcount <=nmax && error >=tolerance)itcount = itcount + 1;x= (a+b)/2;error =abs(f(x));If f(a)*f(x) < 0then b=x;else a=x;end while.

Answers

The approximation to sqrt(3) is 1.7321

This is an approximation to √3 correct to within 10^-4, as requested.

Here is the Matlab code that uses the Bisection method to approximate √3:

% Define the function f(x)

f = (x) x^2 - 3;

% Define the initial interval [a,b]

a = 1;

b = 2;

% Define the tolerance and maximum number of iterations

tolerance = 1e-4;

nmax = 1000;

% Initialize the iteration counter and error

itcount = 0;

error = 1;

% Perform the bisection method until the error is below the tolerance or the

% maximum number of iterations is reached

while (itcount <= nmax && error >= tolerance)

   itcount = itcount + 1;

   x = (a + b) / 2;

   error = abs(f(x));

   if f(a) * f(x) < 0

       b = x;

   else

       a = x;

   end

end

% Print the approximation to sqrt(3)

fprintf('The approximation to sqrt(3) is %.4f\n', x);

The output of the code is:

The approximation to sqrt(3) is 1.7321

This is an approximation to √3 correct to within 10^-4, as requested.

Learn more about approximation here:

https://brainly.com/question/29669607

#SPJ11

y is a continuous uniform random variable with mean 3. the 80th percentile of y is 6. determine the second moment of y.

Answers

The second moment of Y is 3. The second moment of a continuous uniform random variable can be determined using the variance formula Var(Y) = (b - a)^2 / 12, where a and b are the lower and upper bounds of the uniform distribution.

Since we know the mean and the 80th percentile of Y, we can determine the bounds and calculate the second moment.

A continuous uniform random variable has a constant probability density function (PDF) over a given interval. In this case, we have a uniform distribution with a mean of 3. Let's denote this variable as Y.

The 80th percentile of Y is the value below which 80% of the data falls. In other words, it is the value y such that P(Y ≤ y) = 0.8. Since Y follows a continuous uniform distribution, the probability density function is a constant within a given interval.

To find the 80th percentile, we need to determine the upper bound of the interval. Let's denote it as b. The lower bound, denoted as a, can be determined from the symmetry of the distribution. Since the mean is 3, the midpoint of the distribution, a + (b - a) / 2, must be equal to 3. Therefore, a + (b - a) / 2 = 3, which simplifies to (b - a) / 2 = 3 - a.

From this equation, we can deduce that a = 3 - (b - a) / 2, which further simplifies to 2a = 6 - (b - a). Combining like terms, we get 3a = 6 - b, and since a + b = 6 (from the 80th percentile), we can substitute and solve for a: 3a = 6 - (6 - a), which gives us 3a = a. Therefore, a = 0.

Now we know the lower bound a = 0 and the upper bound b = 6. We can plug these values into the formula for the second moment of a continuous uniform random variable: Var(Y) = (b - a)^2 / 12. Substituting the values, we have Var(Y) = (6 - 0)^2 / 12 = 36 / 12 = 3.

Therefore, the second moment of Y is 3.

To learn more about variance, click here: brainly.com/question/27986822

#SPJ11

"At what positive x value, x>0, is the tangent line to the graph of y=x+2/x horizontal? Round answer to 4 decimal places."

Answers

Thus, at x ≈ 1.4142, the tangent line to the graph of y = x + 2/x is horizontal.

To find the x value where the tangent line of the graph y = x + 2/x is horizontal, we need to determine when the first derivative of the function is equal to 0.

This is because the slope of the tangent line is represented by the first derivative, and a horizontal line has a slope of 0.

First, let's find the derivative of y = x + 2/x with respect to x. To do this, we can rewrite the equation as y = x + 2x^(-1).

Now, we can differentiate:
y' = d(x)/dx + d(2x^(-1))/dx = 1 - 2x^(-2)

Next, we want to find the x value when y' = 0:
0 = 1 - 2x^(-2)

Now, we can solve for x:
2x^(-2) = 1
x^(-2) = 1/2
x^2 = 2
x = ±√2

Since we are looking for a positive x value, we can disregard the negative solution and round the positive solution to four decimal places:
x ≈ 1.4142

Thus, at x ≈ 1.4142, the tangent line to the graph of y = x + 2/x is horizontal.

Know more about the tangent line

https://brainly.com/question/30162650

#SPJ11

2) draw an example of a scatter plot with a correlation coefficient around 0.80 to 0.90 (answers may vary)

Answers

In this example, the data points are positively correlated, as the values of the x-axis increase, so do the values of the y-axis. The correlation coefficient is around 0.85, which indicates a strong positive correlation between the two variables.

what is variables?

In statistics and data analysis, a variable is a characteristic or attribute that can take different values or observations in a dataset. In other words, it is a quantity that can vary or change over time or between different individuals or objects. Variables can be classified into different types, including:

Categorical variables: These are variables that take on values that are categories or labels, such as "male" or "female", "red" or "blue", "yes" or "no". Categorical variables can be further divided into nominal variables (unordered categories) and ordinal variables (ordered categories).

Numerical variables: These are variables that take on numeric values, such as age, weight, height, temperature, and income. Numerical variables can be further divided into discrete variables (integer values) and continuous variables (any value within a range).

To learn more about  variables visit:

brainly.com/question/17344045

#SPJ11

A cylindrical specimen of cold-worked copper has a ductility (%EL) of 25%. If its cold-worked radius is 10 mm (0. 40 in. ), what was its radius before deformation

Answers

The % elongation (%EL) is defined as the amount of deformation or elongation of a material before it fails. It is expressed as a percentage of the original length of the material.

To answer the question, we can use the formula for % elongation which is given by:

%EL = (Lf - Li) / Li * 100

where Lf is the final length of the specimen and Li is its original length.

Since the specimen is cylindrical, its original radius can be calculated from its original length using the formula for the circumference of a circle which is:

C = 2πr

where C is the circumference and r is the radius.

Therefore, the original radius can be calculated from the original circumference using the formula:

r = C / 2π

We are given that the specimen has a ductility (%EL) of 25%, which means that it has elongated by 25% before it failed. We are also given that its cold-worked radius is 10 mm (0.40 in.).

We can use this information to find its original radius as follows:

Let the original radius be r1.

Then, the final radius (after deformation) is:

r2 = 10 mm + 25% of 10 mm = 12.5 mm (0.50 in.)

Using the formula for the circumference of a circle, we have:

C1 = 2πr1

C2 = 2πr2

Substituting r2 = 12.5 mm and

C2 = 2πr2

in the above equations, we get:

C2 = 2π(12.5)

= 78.54 mm (3.10 in.)

Therefore, the original radius is:

r1 = C1 / 2π

= 78.54 mm / 2π

= 12.5 mm (0.50 in.)

Thus, the original radius of the copper specimen before deformation was 12.5 mm.

To know more about  circumference,visit:

https://brainly.com/question/28757341

#SPJ11

1)Find f(23)?(4) for the Taylor series for f(x) centered at 4 iff(x) = \sum_{n=0}^{Infinity}(n+3)(x-4^n)/(n+1)!2)Find the Taylor series for f(x) centered at the given value of a. [Assume that f has a power series expansion. Do not show that Rn(x) ? 0.]f(x)=\frac{8}{x} a = -2

Answers

1. The Taylor series for f(x) centered at 4 if [tex]f(x) = \sum_{n=0}^{Infinity}(n+3)(x-4^n)/(n+1)!2)[/tex] is [tex]f(23.4) = \sum_{n=0}^{Infinity}(n+3)(23.4-4^n)/(n+1)![/tex]

2. The Taylor series for f(x) centered at the given value of a is f(x) = -4 + 2(x+2) - (2/3)(x+2)² + (4/3)(x+2)³ - ...

1.  To find the Taylor series for f(x) centered at 4, we need to first find the derivatives of f(x):

[tex]f(x) = \sum_{n=0}^{Infinity}(n+3)(x-4^n)/(n+1)!f'(x) = \sum_{n=1}^{Infinity}(n+2)(x-4^{n-1})/n!\\f''(x) = \sum_{n=2}^{Infinity}(n+1)(x-4^{n-2})/(n-1)!\\f'''(x) = \sum_{n=3}^{Infinity}(n)(x-4^{n-3})/(n-2)!\\[/tex]

and so on. Note that for all derivatives of f(x), the constant term is zero.

Now, to find f(23.4), we can substitute x = 23.4 into the Taylor series for f(x) centered at 4 and simplify:

[tex]f(x) = \sum_{n=0}^{Infinity}(n+3)(x-4^n)/(n+1)!\\f(23.4) = \sum_{n=0}^{Infinity}(n+3)(23.4-4^n)/(n+1)![/tex]

The series converges by the Ratio Test, so we can evaluate it numerically to find f(23.4).

2. To find the Taylor series for f(x) centered at a = -2, we can use the formula:

[tex]f(x) = \sum_{n=0}^{Infinity}f^{(n)}(a)/(n!)(x-a)^n[/tex]

where f^{(n)}(a) denotes the nth derivative of f(x) evaluated at a.

First, we find the derivatives of f(x):

f(x) = 8/x

f'(x) = -8/x²

f''(x) = 16/x³

f'''(x) = -48/x⁴

and so on. Note that all derivatives of f(x) have a factor of 8/x^n.

Next, we evaluate each derivative at a = -2:

f(-2) = -4

f'(-2) = 2

f''(-2) = -2/3

f'''(-2) = 4/3

and so on.

Finally, we substitute these values into the formula for the Taylor series to obtain:

f(x) = -4 + 2(x+2) - (2/3)(x+2)² + (4/3)(x+2)³ - ...

Note that the radius of convergence of this series is the distance from -2 to the nearest singularity of f(x), which is x = 0. Therefore, the radius of convergence is R = 2.

To know more about Taylor series here

brainly.com/question/29733106

#SPJ11

let ˆβ1 be the ols estimator for β1 in simple linear regression. show e(ˆβ1) = β1, i.e.,ˆβ1 is unbiased for β1.

Answers

The Ordinary Least Squares (OLS) estimator, denoted as ˆβ1, for β1 in simple linear regression is unbiased. In other words, the expected value of the OLS estimator equals the true value of the parameter, β1.

In simple linear regression, we aim to estimate the relationship between a dependent variable and an independent variable. The OLS estimator, ˆβ1, is obtained by minimizing the sum of squared differences between the observed dependent variable and the predicted values based on the estimated slope coefficient, β1.

To show that the OLS estimator is unbiased, we need to demonstrate that its expected value equals the true value of the parameter. Mathematically, we need to prove that E(ˆβ1) = β1.

Under certain assumptions, such as the error term having a mean of zero and being uncorrelated with the independent variable, it can be shown that the OLS estimator is unbiased. This means that, on average, the estimated value of β1 will be equal to the true value of β1. The unbiasedness property is crucial in statistical inference as it allows us to make valid inferences about the population parameter based on the estimated coefficient.

Overall, the OLS estimator for β1 in simple linear regression, denoted as ˆβ1, is an unbiased estimator of the true parameter β1. This property holds under specific assumptions and is essential in statistical analysis for drawing accurate conclusions about the relationship between variables.

Learn more about squared here: https://brainly.com/question/14198272

#SPJ11

Mr. Hernandez bakes specialty cakes. He uses many different containers of various sizes and shapes to
bake the parts of his cakes. Select all of the following containers which hold the same amount of batter
Need Help ASAP!

Answers

Answer:

The answer is A and B

The volume of a sphere with radius r is given by the formula V = (4/3)πr^3. The volume of a hemisphere with radius r is given by the formula V = (2/3)πr^3.

If we substitute r = 2 cm in the formulas, we get:

- Volume of sphere = (4/3)π(2)^3 = (4/3)π(8) = 32/3π

- Volume of hemisphere = (2/3)π(2)^3 = (2/3)π(8) = 16/3π

So, the sphere with a radius of 2 cm and the hemisphere with a radius of 5 cm have the same volume of 32/3π cubic centimeters.

The volume of a cylinder with radius r and height h is given by the formula V = πr^2h.

If we substitute r = 10 cm and h = 7 cm in the formula, we get:

- Volume of cylinder = π(10)^2(7) = 700π cubic centimeters

The volume of a cone with radius r and height h is given by the formula V = (1/3)πr^2h.

If we substitute r = 4 cm and h = 2 cm in the formula, we get:

- Volume of cone = (1/3)π(4)^2(2) = 32/3π cubic centimeters.

Therefore, the cylinder and the cone do not hold the same amount of batter as the sphere and the hemisphere.

Other Questions
If and are the roots of the equation 2x^2- 7x-3 = 0,Find the values of:+^2+ ^2 Which of the following factors, when increased, will tend to cause the value of a put to decrease (all else equal)?A. The expected volatility of the underlying stockB. The price of the underlying stockC. The time to maturity.D. The strike price None of the options are correct. An angiosperm megagametophyte with 110 cells would be a highly unusual specimen because the flowering plant typically has a megagametophyte consisting of a. one pollen grain. b. a pollen tube. c. an embryo sac with eight haploid nuclei. d. microspores. e. a megasporangium and the cells within it. Let sin (60)=3/2. Enter the angle measure (0), in degrees, for cos (0)=3/2 HELP URGENTLY 1.13 suppose a new standard, the iddd-643 standard, is developed for storing numbers in a string of 16 bits. the first bit is used for the sign of the number (0 if positive and 1 if negative). the next five bits store the exponent plus the bias, and the remaining 10 bits store the mantissa. the bias is 15 and no bits are reserved for any special purposes. what is the smallest exponent that can be stored? describe all three stages in the 'life cycle' of an atoll. what is the most important characteristic of each stage? you should mention the tectonic aspects of each stage as well. solve the following differential equations using laplace transforms dy(t) 2 y(t) = 8 u(t) y(0) = 0 dt _____ used very complex forms and techniques to develop very precise ideas and meanings. the number of times interest earned ratio = ______ interest expense.multiple choice question.earnings before interest and taxes a series rlc circuit is built with a 100 ohm resistor, a .55uf capacitor and a 122mh inductor. what would be the resonance frequency for circuit? a. .291hz b. 614 hz c. 391hz d. .614hz match each phenotype to the environment for which it is most suited. environments may have more than one phenotype. What is the definition of electrochemistry? in an alcohol-in-glass thermometer, the alcohol column has length 12.68 cm at 0.0 c and length 22.55 cm at 100.0 c. What is the temperature if the column has length a. 15.10 cm, and b. 22.95 cm. Use th Fundamental Theorem of Calculus to evaluate H(2), where H'(x)=sin(x)ln(x) and H(1.5)=-4. For each of the following logic expressions, use a Karnaugh map to find all of the static hazards in the corresponding two-level AND-OR circuit, and design a hazard-free circuit that realizes the same logic function: (a) F=W.X + W'. Y (b) F=W.X'. Y' + XY'.Z+XY (c) F=W.Y+W'. Z'+XY'.Z (d) F=W'. X' + Y'.Z+W'.XYZ+W.XYZ (e) F=W'. Y + X'. Y'+W.XZ (f) F=W'.X+Y'.Z+W.XYZ+W.X'.Y.Z' (g) F=WX'Y' + XY'.Z+XY A company is evaluating a new 4-year project. The equipment necessary for the project will cost $3,400,000 and can be sold for $705,000 at the end of the project. The asset is in the 5-year MACRS class. The equipment? depreciation percentage each year is 20.00 percent, 32.00 percent, 19.20 percent, 11.52 percent, and 11.52 percent, respectively. The company's tax rate is 35 percent. What is the aftertax salvage value of the Multiple Choice $458,250 $746,118 $705,000 $663,882 $526,794 The point (2, 1) is the turning point of the graph with equation y = x + ax + b,where a and b are integers.Find the values of a and b.Optional working+ab = mt. pinatubo, a volcano in the philippines, erupted in 1991. the eruption resulted in the cooling of earths surface for two years. what can you deduce from the information given? In the context of Xiaomi's unconventional approach to design, which of the following is used as a key element of its strategy?Patent-protected technologyPersonal excellenceLong-term inventory holdingCrowd-sourcing Suppose 40% of PC gamers in the U.S. say they bought Cyberpunk 2077 on Steam. A random sample of 8 PC gamers is selected. What is the probability at most 2 of the 8 say they bought Cyberpunk 2077 on Steam?A. 0.2090B. 0.8936C. 0.3154D. 0.6846