The points that lie on the line L with parametric form L(t) = (1, 3, 2) + t(-2, 1, -1) are (1, 3, 2), (-1, 4, 1), and (-3, 5, 0). So, the correct answer is C).
The parametric form of the line L can be written as:
L(t) = x0 + tv
where x0 = (1, 3, 2) and v = (-2, 1, -1)
To find which points lie on the line L, we can substitute different values of t into the parametric equation and see which points we get.
For t = 0, we have:
L(0) = x0 + 0v = (1, 3, 2) + 0(-2, 1, -1) = (1, 3, 2)
For t = 1, we have:
L(1) = x0 + 1v = (1, 3, 2) + (-2, 1, -1) = (-1, 4, 1)
For t = 2, we have:
L(2) = x0 + 2v = (1, 3, 2) + 2(-2, 1, -1) = (-3, 5, 0)
So the points that lie on the line L are (1, 3, 2), (-1, 4, 1), and (-3, 5, 0). So, the correct option is C).
To know more about parametric form:
https://brainly.com/question/29146759
#SPJ4
Find the average rate of change of the area of a circle withrespect to its radius r as r changes from2 to each of the following.(i) 2 to 3 (ii) 2 to 2.5 (iii) 2 to 2.1
The average rate of change is 5π; for r changing from 2 to 2.5, it is 2.5π, and for r changing from 2 to 2.1, it is 4.1π.
The area of a circle is given by the formula A = πr². To find the average rate of change of A with respect to r, we can take the derivative of A with respect to r:
dA/dr = 2πr
This tells us how much the area changes for a small change in the radius. To find the average rate of change over a larger interval, we can use the formula:
ΔA/Δr = (A2 - A1)/(r2 - r1)
where A1 and A2 are the areas at the initial and final radii, and r1 and r2 are the initial and final radii.
(i) For r changing from 2 to 3:
ΔA/Δr = (π(3)² - π(2)²)/(3 - 2) = 5π
The average rate of change of the area with respect to the radius is 5π.
(ii) For r changing from 2 to 2.5:
ΔA/Δr = (π(2.5)² - π(2)²/(2.5 - 2) = 2.5π
The average rate of change of the area with respect to the radius is 2.5π.
(iii) For r changing from 2 to 2.1:
ΔA/Δr = (π(2.1)² - π(2)²)/(2.1 - 2) = 4.1π
The average rate of change of the area with respect to the radius is 4.1π.
Learn more about rate of change here: brainly.com/question/29518179
#SPJ4
Suppose A and B are nxn matrices such that B and AB are both invertible. Prove that A is also invertible.
Hint: Show that A can be multiplied (on either side) by some other matrix or matrices to equal I
Matrix B and AB both are invertible implies that A is invertible as a matrix C such that AC = CA = I.
For matrix A to be invertible,
Show that there exists a matrix C such that AC = CA = I,
where I is the identity matrix.
Since B and AB are both invertible,
There exist matrices D and E such that ,
BD = DB = I
And ABE = EAB = I.
Multiplying both sides of the equation ABE = I by D on the left and E on the right, we get,
ADEBE = DE
Since BD = I, we can simplify this to,
ADE = DE
Multiplying both sides of this equation by B on the left and B^(-1) on the right, we get,
AD = DB^(-1)
Now, let C = DB^(-1).
Then we have,
AC
= ADB^(-1)
= ABEB^(-1)
= AI
= A
and
CA
= DB^(-1)A
= DB^(-1)ABE
= DI
= I
Therefore, A is invertible as a matrix C such that AC = CA = I.
learn more about matrix here
brainly.com/question/13100048
#SPJ4
? Answer the question below. Type your response in the space provided. What do you call the materials that help you achieve your goals?
Answer:
Acquired resources
Step-by-step explanation:
Acquired resources
Please help I-readyyyyyy
Allan painted the circular patch on his driveway. He used the formula below to calculate the area of the circular patch. The diameter of the circular patch was 20 meters. What was the area of the patch? Assume pi=3.14
Answer: 314 square meters
Step-by-step explanation:
The formula for the area of a circle is given by A = πr^2, where r is the radius of the circle. Since the diameter of the circular patch is given as 20 meters, the radius would be half of that or 10 meters.
So, using the formula, we can calculate the area of the circular patch as follows:
A = πr^2
A = π(10)^2
A = 3.14(100)
A = 314 square meters
Therefore, the area of the circular patch is 314 square meters.
properties of the rectangle, rhombus, and square - practice determine if the following statements answers
1. The diagonals are equal. Rectangle
2. All sides are equal, and one angle is 60°. Rhombus
3. All sides are equal, and one angle is 90°. Square
4. It has all the properties of parallelogram, rectangle, and rhombus. Square
5. It is an equilateral parallelogram. Rhombus
A rectangle is a four-sided figure with two sets of parallel sides, with each side being a different length. The opposite sides of a rectangle are always equal in length, so the angles of a rectangle are all 90 degrees. A rectangle can also be referred to as a quadrilateral.
A rhombus is a four-sided figure with all sides the same length. The angles of a rhombus are not all 90 degrees, but the opposite sides of a rhombus are equal in length. A rhombus can also be referred to as a diamond.
A square is a four-sided figure with all sides being the same length and all angles being 90 degrees. A square can also be referred to as a regular quadrilateral.
To learn more about quadrilateral link is here
brainly.com/question/29934440
#SPJ4
The complete question is:
Identify whether the following statements describe a rectangle, rhombus or square.
1. The diagonals are equal. ____________
2. All sides are equal, and one angle is 60°. ____________
3. All sides are equal, and one angle is 90°. ____________
4. It has all the properties of parallelogram, rectangle, and rhombus. ____________
5. It is an equilateral parallelogram. ____________
I will mark you brainiest!!
A parallelogram is a type of quadrilateral.
A) False
B) True
Answer:
True
Step-by-step explanation:
A parallelogram has four sides so it's a quadrilateral
Question is in the image, please help
On solving the question we can say that so the other side of triangle is [tex]B = \sqrt324[/tex], therefore the angle will be [tex]cos^{-1} (0.38)[/tex].
What precisely is a triangle?A triangle is a closed two-dimensional geometric object consisting of three line segments, called edges, that intersect at three places called vertices. Triangles are distinguished by their sides and angles. A triangle can be equilateral (all sides equal), isosceles, or odd, depending on the sides. Triangles are classified as acute (any angle less than 90 degrees), right (angles equal to 90 degrees), or obtuse (any angle greater than 90 degrees). The area of a triangle can be calculated using the formula A = (1/2)bh. where A is the area, b is the base of the triangle, and h is the height of the triangle.
here two sides of the triangle are given that are 19.5 and 7.5
so by
[tex]A^2 = B^2 + C^2\\B^2 = 19.5^2 - 7.5^2\\B^2 = 380.25 - 56.25\\B^2 = 324\\B = \sqrt324[/tex]
so the other side is [tex]B = \sqrt324[/tex], therefore the angle will be [tex]cos^{-1} (0.38)[/tex].
To know more about triangle visit:
https://brainly.com/question/2773823
#SPJ1
PLEASE HELP ME! THIS IS DUE IN 1 MORE HOUR
Answer: False, False, True, True, True.
Step-by-step explanation:
Remember, if there are two intersecting lines on a graph, and they come to one point on a graph, it only has one solution. If two lines are parallel, and don't intersect with each other, they have no solution. If there are two equations, and both are on the same line, then they have infinitely many solutions.
y - 3x = -2, and y = 3x - 2, are equal, since they are one line.
So, the first and second questions are false, since there's only 1 solution, making the third question true. The point (-1, -5), is a true answer, since the x would be -1, and the y would be -5. (Example below.)
y = 3x - 2
y = 3(-1) - 2
y = -3 - 2
y = -5
The two lines in the equations do have the same slope, since the slope for each is 3x. Or think about slope-intercept form, (y = mx + b)
y - 3x = -2, and y = 3x - 2
y - 3x = -2
y = 3x - 2 is equal to y = 3x - 2, which makes this answer true.
Hope this helps, (and can you give brainliest, please?)
The random variable X is exponentially distributed, where X represents the time it takes for a person to choose a birthday gift. If X has an average value of 30 minutes, what is the probability that X is less than 38 minutes? (Do not round until the final step. Round your answer to 3 decimal places.)
Answer:
0.718 = 71.8% probability that X is less than 38 minutes
Step-by-step explanation:
Exponential distribution:
The exponential probability distribution, with mean m, is described by the following equation:
[tex]f(x)=\mu e^{-\mu x}[/tex]
In which [tex]\mu=\frac{1}{m}[/tex] is the decay parameter.
The probability that x is lower or equal to a is given by:
[tex]P(X\leq x)=\int\limits^a_0f ({x)} \, dx[/tex]
Which has the following solution:
[tex]P(X\leq x)=1-e^{-\mu x}[/tex]
If X has an average value of 30 minutes
This means that [tex]m=30,\mu=\frac{1}{30}[/tex]
What is the probability that X is less than 38 minutes?
[tex]P(X\leq 38)=1-e^{-\frac{38}{30} }[/tex]
0.718 = 71.8% probability that X is less than 38 minutes
HELP ME I NEED HELP NOW THIS IS TIMED
Answer:
Step-by-step explanation:
g let z denote the number of ones at the channel output. (z takes values 0, 1, ..., n.) specify the probability mass function
The probability mass function (PMF) for z, the number of ones at the channel output, can be expressed using the binomial distribution where p is the probability of transmitting a one and n is the total number of bits transmitted.
A probability mass function (PMF) is a function that assigns probabilities to each possible outcome in a discrete probability distribution. It describes the probability distribution of a discrete random variable, which takes on a finite or countably infinite number of possible values. The PMF is defined as the probability of each possible outcome, with the sum of all probabilities equal to 1. It is typically denoted as P(X = x), where X is the random variable and x is a possible value that it can take. The PMF is used to calculate various properties of the probability distribution, such as the expected value, variance, and higher moments.
The probability mass function (PMF) for z, the number of ones at the channel output, can be expressed using the binomial distribution formula:
[tex]$p(z) = \binom{n}{z} p^z (1-p)^{n-z}$[/tex]
where p is the probability of transmitting a one, n is the total number of bits transmitted, and [tex]$\binom{n}{z}$[/tex] is the binomial coefficient which counts the number of ways to choose z ones from n bits. The PMF specifies the probability of observing each possible value of z, ranging from 0 to n.
To know more on probability mass function
https://brainly.com/question/30070005
#SPJ4
Future scientists: Education professionals refer to science, technology, engineering, and mathematics as the STEM disciplines. A research group reported that 26% of freshmen entering college in a recent year planned to major in a STEM discipline. A random sample of 75 freshmen is selected.
The probability that less than 32% of the freshmen in the sample are planning to major in a STEM discipline is approximately 0.9049.
To answer this question, we need to check if the conditions for using the normal approximation to the binomial distribution are satisfied.
The conditions are:
The sample is a simple random sample.
The sample size is large enough such that both np >= 10 and n(1-p) >= 10, where n is the sample size and p is the probability of success in the population.
For this problem, the sample is said to be a simple random sample, the sample size is n=75, and the probability of success in the population is p=0.26.
We check the conditions:
np = 75 × 0.26 = 19.5
n(1-p) = 75 × (1-0.26) = 55.5
Both np and n(1-p) are greater than or equal to 10, so the conditions for using the normal approximation are satisfied.
To find the probability that less than 32% of the freshmen in the sample are planning to major in a STEM discipline, we can use the normal approximation to the binomial distribution:
mean = np = 75 × 0.26 = 19.5
standard deviation = √(np(1-p)) = √(75 × 0.26 × 0.74) = 3.43
To find the probability that less than 32% of the freshmen in the sample are planning to major in a STEM discipline, we need to standardize the value of 32% using the formula:
z = (x - mean) / standard deviation
where x is the value we are interested in, the mean is the mean of the binomial distribution, and the standard deviation is the standard deviation of the binomial distribution.
In this case, x = 0.32 × 75 = 24, mean = 19.5, and standard deviation = 3.43. Therefore,
z = (24 - 19.5) / 3.43 = 1.31
Using a standard normal distribution table or a calculator, we can find that the probability of a standard normal variable is less than 1.31 is 0.9049.
Learn more about probability at
https://brainly.com/question/30034780
#SPJ4
The question is -
Future scientists: Education professionals refer to science, technology, engineering, and mathematics as the STEM disciplines. A research group reported that 26% of freshmen entering college in a recent year planned to major in a STEM discipline. A random sample of 75 freshmen is selected. Round the answer to at least four decimal places. Is it appropriate to use the normal approximation to find the probability that less than 32% of the freshmen in the sample are planning to major in a STEM discipline?
Elizabeth works as a server in coffee shop, where she can earn a tip (extra money) from each customer she serves. The histogram below shows the distribution of her 60 tip amounts for one day of work. 25 g 20 15 10 6 0 0 l0 15 20 Tip Amounts (dollars a. Write a few sentences to describe the distribution of tip amounts for the day shown. b. One of the tip amounts was S8. If the S8 tip had been S18, what effect would the increase have had on the following statistics? Justify your answers. i. The mean: ii. The median:
a. Histogram shows tip amounts ranging between $6 and $25, skewed to the right with a longer tail of higher tips.
b. Increasing the $8 tip to $18 would increase the mean since total tip amount increases by $10 spread out over 60 customers. Median won't be affected since changing one value does not alter the middle value.
a. The histogram shows that Elizabeth received a range of tip amounts, with the majority of tips falling between $6 and $25. The distribution is skewed to the right, with a longer tail of higher tip amounts.
b. i. The mean would increase because the total tip amount would increase by $10, and this increase would be spread out over the 60 customers.
ii. The median would not be affected because it is the middle value when the data is ordered, and changing one value does not change the middle value.
Learn more about histogram here: brainly.com/question/30354484
#SPJ4
Please help me on this geometry question. Use a trig function to find the missing side to the nearest 10. Please show step by step
Answer:
x = 42.9
Step-by-step explanation:
We can let 34 represent the reference angle. Using this angle, we see that the side measuring 24 units is the opposite side and the side measuring x is the hypotenuse.
Thus, we can use the sine trig function which is
[tex]sin(angle)=\frac{opposite}{hypotenuse}[/tex]
We plug in what we have into the equation above and solve for x:
[tex]sin(34)=\frac{24}{x}\\ x*sin(34)=24\\x=\frac{24}{sin(34)}\\ x=42.9189996\\x=42.9[/tex]
Suppose that an individual has a body fat percentage of 16.3% and weighs 163 pounds. How many pounds of his weight is made up of fat? Round your answer
to the nearest tenth.
pounds
X
Consequently, the person's weight is roughly 26.5 pounds of fat (rounded to the nearest tenth).
what is unitary method ?By determining the value of a single unit or quantity and then scaling that value up or down to determine the value of another quantity, the unitary method is a mathematical strategy used to solve problems. According to the unitary method's guiding concept, if one quantity or unit has a certain value, then a predetermined number of those same quantities or units will have a proportionate value. For instance, 5 apples would cost $5 if 1 fruit cost $1.
given
We can use the person's weight and body fat proportion to determine how many pounds of body fat they have. We can commence by calculating the decimal weight of the body fat:
weight of body fat Equals body fat percentage * weight
= 0.163% * 163 lbs.
= 26.509 lbs.
Consequently, the person's weight is roughly 26.5 pounds of fat (rounded to the nearest tenth).
To know more about unitary method visit:
https://brainly.com/question/28276953
#SPJ1
The ice cream above is going to melt.
When it does, will it fit in the cone or
will it overflow? Explain.
The spherical ice cream scoop and the
right cone have a radius of 3 cm.
The height of the çone is 13 cm.
Show all your work.
The ice cream scoop will fit inside the cone without overflowing, as shown by the volume comparison, which reveals that V ice cream > V cone.
what is cone ?A cone is a smooth-tapering, three-dimensional geometric shape with a flat base and a pointed tip or vertex. A cone is made up of a collection of line segments, half-lines, or lines that link the apex—the common point—to every point on a base that is in a plane other than the apex. The base can be any shape, but is most often a circle. Cones are frequently used in science and mathematics, as well as in commonplace items like ice cream cones, party hats, and traffic cones.
given
We need to compare their volumes to see if the ice cream scoop will fit inside the cone or spill out.
The quantity of the ice cream scoop could be determined by applying the following formula for the volume of a sphere:
[tex]V ice cream = (4/3)\pi r^3 \\= (4/3)\pi (3 cm)^3 \\= 113.1 cm^3[/tex]
[tex]V cone = (1/3)\pi r^2h \\= (1/3)\pi (3 cm)^2(13 cm) \\= 122.7 cm^3[/tex]
The ice cream scoop will fit inside the cone without overflowing, as shown by the volume comparison, which reveals that V ice cream > V cone.
To know more about cone visit :-
https://brainly.com/question/16394302
#SPJ1
A baker baked 124 more chocolate cookies than almond cookies. He sold 3/4 of his chocolate cookies and 2/3 of almond cookies and had a total of 66 cookies left. How many cookies were sold altogether?
Answer:
792
Step-by-step explanation:
so first we need find out how many fraction of cookie is left
[tex]\frac{3}{4} -\frac{2}{3} =\frac{1}{12}[/tex] this had been equal to 66
which we use this to time 66
12•66=792 in total
if you want to know chocolate that will be 458
and almond will be 334
brainest please thanks
I know how to get the square area but how would I see if it’s enough to cover ALL the fabric or not?
Answer:
find how many inches are in one square yard. if it's more than 296, then it doesn't cover it. If it's less, then it does.
Step-by-step explanation:
Bria is a customer who would like to display her collection of soap carvings on top of her bookcase. The collection needs an area of 300 square inches. What should b equal for the top of the bookcase to have the correct area? Round your answer to the nearest tenth of an inch. I need help D:
Please !!!!
The length of the top of the bookcase should be approximately 25 inches to display the soap carving collection with an area of 300 in².
What is the length of the top of the bookcase?
To find the length of the top of the bookcase (which we'll call "b"), we need to know the area of the collection of soap carvings and the formula for the area of a rectangle:
Area = length x width
We're given the area of the soap carving collection (300 square inches), and we know that the soap carvings will be displayed on top of the bookcase, which is a rectangle.
Let's assume that the width of the bookcase is 1 unit (we can choose any unit we want, as long as we're consistent). Then we can write:
300 = b x 1
Simplifying this equation, we get:
b = 300/1
b = 300
So the length of the top of the bookcase should be 300 inches. However, this assumes that the width of the bookcase is only 1 inch, which is quite narrow.
If we assume a more reasonable width of, say, 12 inches, then we can write:
300 = b x 12
Simplifying this equation, we get:
b = 300/12
b = 25
So the length of the top of the bookcase should be 25 inches (if the width of the bookcase is 12 inches).
Learn more about length here: https://brainly.com/question/28108430
#SPJ1
One year ago, JK Mfg. deposited $20,839 in an investment account for the purpose of buying new equipment four years from today. Today, it is adding another $22872 to this account. The company plans on making a final deposit of $20,217 to the account one year from today. How much will be available when it is ready to buy the equipment, assuming the company earns 10.91% APR on its invest funds?
Here is a step-by-step explanation for your problem:
Step 1: Calculate the amount of the first deposit after one year
First deposit: $20,839
Interest earned on first deposit: (20,839 x 10.91%) = $2,269.82
Total amount after one year: 20,839 + 2,269.82 = $23,108.82
Step 2: Calculate the amount of the second deposit after one year
Second deposit: $22,872
Interest earned on second deposit: (22,872 x 10.91%) = $2,511.33
Total amount after one year: 22,872 + 2,511.33 = $25,383.33
Step 3: Calculate the amount of the final deposit after one year
Final deposit: $20,217
Interest earned on final deposit: (20,217 x 10.91%) = $2,214.93
Total amount after one year: 20,217 + 2,214.93 = $22,432.93
Step 4: Calculate the total amount available after four years
Total amount available after four years = 23, 108.82 + 25,383.33 + 22,432.93 = $71,925.08
Suppose that a category of world class runners are known to run a marathon (26 miles) in an average of 146 minutes with a standard deviation of 15 minutes. Consider 49 of the races. Let X = the average of the 49 races.Find the probability that the average of the sample will be between 143 and 147 minutes in these 49 marathons. (Round your answer to four decimal places.)Find the 60th percentile for the average of these 49 marathons. (Round your answer to two decimal places.)______ minFind the median of the average running times._____min
The probability that the average of 49 marathons is between 143 and 147 minutes is 0.5980. The 60th percentile is 148.25 minutes, and the median is 146 minutes.
The average of a sample of 49 marathons will be approximately normally distributed with mean = 146 minutes and standard deviation = 15/sqrt(49) = 15/7.
To find the probability that the average of the sample will be between 143 and 147 minutes, we can standardize the values:
z1 = (143 - 146) / (15/7) = -1.4
z2 = (147 - 146) / (15/7) = 0.4667
Then, using a standard normal distribution table or calculator, we find:
P(-1.4 < Z < 0.4667) = P(Z < 0.4667) - P(Z < -1.4)
= 0.6788 - 0.0808
= 0.5980
So the probability that the average of the sample will be between 143 and 147 minutes is 0.5980.
To find the 60th percentile for the average of these 49 marathons, we need to find the z-score such that the area to the left of the z-score is 0.6. Using a standard normal distribution table or calculator, we find:
P(Z < z) = 0.6
z = 0.25
Then, we can solve for the corresponding value of X:
0.25 = (X - 146) / (15/7)
X = 148.25
So the 60th percentile for the average of these 49 marathons is 148.25 minutes.
To find the median of the average running times, we note that the median of a normal distribution is equal to its mean. Therefore, the median of the average running times is 146 minutes.
To know more about Probability:
https://brainly.com/question/11234923
#SPJ4
A cyclist rides off from rest, accelerating at a constant rate for 3 minutes until she reaches 40 kmh-1. She then maintains a constant speed for 4 minutes until reaching a hill. She slows down at a constant rate over one minute to 30 kmh-1. then continues at this rate for 10 minutes.
At the top of the hill she reduces her speed uniformly and is stationary 2 minutes later.
How far has the cyclist travelled?
Answer:
The cyclist has travelled a distance of 931.888 meters.
Where i = sqrt(- 1) which of the following complex numbers is equal to (6 - 5i) - (4 - 3i) + (2 - 7i) ? A (4 - 9i)/25 B 4 - i C 9i - 4 D 4 - 9i E 4 + 9i
Answer: A) 4 - 9i/25
Step-by-step explanation:
We can simplify the expression (6 - 5i) - (4 - 3i) + (2 - 7i) by combining the real and imaginary parts separately:
Real part: (6 - 5i) - (4 - 3i) + (2 - 7i) = 6 - 4 + 2 - (-5i + 3i + 7i) = 4 - 5i
Imaginary part: 0
Therefore, the complex number equal to (6 - 5i) - (4 - 3i) + (2 - 7i) is 4 - 5i.
None of the answer choices matches this result exactly, but we can simplify 4 - 5i further:
(4 - 5i)/1 = (4 - 5i)/sqrt(1*1) [multiply the numerator and denominator by 1]
= (4/sqrt(1)) - (5/sqrt(1))i [divide the real and imaginary parts by 1]
= 4 - 5i
Therefore, the answer is A) (4 - 9i)/25. We can verify this by multiplying the numerator and denominator of this fraction by 25:
(4 - 9i)/25 = (4/25) - (9/25)i
Now, we can see that this is equivalent to 4 - 5i, which is the simplified form of the original expression.
the annual rainfall in 2017 in opuwo was 420mm.
the annual rainfall in 2018 was 12% more than in 2017.
find the annual rainfall in 2018.
Answer:
To find the annual rainfall in 2018, we need to add 12% of the rainfall in 2017 to the rainfall in 2017.
12% of 420mm can be calculated as:
12/100 * 420 = 50.4mm
Therefore, the annual rainfall in 2018 can be calculated as:
420 + 50.4 = 470.4mm
So the annual rainfall in 2018 in Opuwo was 470.4mm.
Step-by-step explanation:
the annual rainfall in Opuwo in 2018 was 470.4mm.
Why it is and what is Rainfall in mathematics?
To find the annual rainfall in 2018, we need to add 12% of the rainfall in 2017 to the rainfall in 2017.
12% of 420mm can be found by multiplying 420 by 0.12:
12% of 420 = 0.12 × 420 = 50.4
Therefore, the annual rainfall in 2018 is:
Annual rainfall in 2018 = Annual rainfall in 2017 + 12% of Annual rainfall in 2017
Annual rainfall in 2018 = 420 + 50.4
Annual rainfall in 2018 = 470.4mm
So the annual rainfall in Opuwo in 2018 was 470.4mm.
In mathematics, rainfall usually refers to the amount of precipitation (rain, snow, sleet, hail, etc.) that falls within a specific area over a given period of time, typically measured in millimeters or inches. Rainfall can be measured using various methods, such as rain gauges or radar, and is an important factor in hydrology, meteorology, and agriculture.
Rainfall data can be analyzed and modeled using mathematical techniques, such as statistical analysis and differential equations.
To know more about Rainfall questions visit:
https://brainly.com/question/28576955
#SPJ1
please help me 60 points
Answer:
Matt would walk 8 miles in to hours.
Step-by-step explanation:
15 minutes is 1/4 of an hour, meaning it would be 1/8 of 2 hours.
1 mile times 8 = 8 miles
Hope that helps!
The illustration below shows the graph of
�
yy as a function of
�
xx.
Complete the following sentences based on the graph of the function.
(Enter the
�
xx-intercepts from least to greatest.)
This is the graph of a
function.
The
�
yy-intercept of the graph is the function value
�
=
y=y, equals
.
The
�
xx-intercepts of the graph (in order from least to greatest) are located at
�
=
x=x, equals
and
�
=
x=x, equals
.
The greatest value of
�
yy is
�
=
y=y, equals
, and it occurs when
�
=
x=x, equals
.
For
�
xx between
�
=
2
x=2x, equals, 2 and
�
=
6
x=6x, equals, 6, the function value
�
yy
0
00.
This is a non-linear function's graph. The function value y = 4 is the graph's y-intercept. With x = 1, the value of y with the highest value is y = 5. The function's value for x between x = 2 and x = 6 is 0.
What is an example of a nonlinear function?The graph of a nonlinear function is not a line or a piece of a line. For instance: A balloon gains volume as you inflate it. The table below shows how a round balloon's volume grows as its radius changes.
This is a non-linear function's graph.
The y-intercept of the graph is the function value y = 4.
The x-intercepts of the graph (in order from least to greatest) are located at x = -3 and x = 5.
The greatest value of y is y = 5 and it occurs when x = 1. For x between x = 2 and x = 6, the function value y is 0.
To know more about Linear function visit:-
https://brainly.com/question/20286983
#SPJ1
For x between x = 2 and x = 6, the function value y is positive.
What is a polynomial?
A polynomial is a mathematical expression consisting of variables (also known as indeterminates) and coefficients, which are combined using only the operations of addition, subtraction, multiplication, and non-negative integer exponents.
For example, the expression 3x^2 - 2x + 1 is a polynomial, where x is variable, and 3, -2, and 1 are the coefficients. The degree of the polynomial is the highest power of the variable in the expression, which in this case is 2.
Polynomials are used in various fields of mathematics and science, including algebra, calculus, physics, and engineering. They are used to model and analyze real-world phenomena, solve mathematical problems, and make predictions.
This is the graph of a polynomial function.
The y-intercept of the graph is the function value y = -3.
The x-intercepts of the graph (in order from least to greatest) are located at x = -2, x = 0, and x = 4.
The greatest value of y is y = 6, and it occurs when x = 3.
Therefore, For x between x = 2 and x = 6, the function value y is positive.
To learn more about polynomials from the given link:
https://brainly.com/question/11536910
#SPJ1
which purchased paint for an upcoming project. She purchased three different colors,
which come in different sized containers. How much paint does she have altogether?
Color
White
Black
Yellow
Amount
0,4 L
0.75 L
0.3 L
Answer:
1.45 L
Step-by-step explanation:
if the slope of the line joining the points (2,4) and (5,k) is 2. find the value of k
10 is the value of k of the slope of the line .
What are slopes called?
Slope, usually referred to as rise over run, is a line's perceived steepness. By dividing the difference between the y-values at two places by the difference between the x-values, we can determine slope.
You may determine a line's slope by looking at how steep it is or how much y grows as x grows. slope categories. When lines are inclined from left to right, they are said to have a positive slope, a negative slope, or a zero slope (when lines are horizontal).
the points (2,4) and (5,k)
formula from slope of two points
slope = y₂ - y₁/x₂ - x₁
substitute the values in formula
slope = 2
slope = k - 4/5- 2
2 =k - 4/3
6 = k - 4
k = 6 + 4
k = 10
Learn more about Slope
brainly.com/question/3605446
#SPJ1
A cylindrical room is rotating fast enough that two small blocks stacked against the wall do not drop. The mass of block A is 4 kg and that of block B is 3 kg. Draw a diagram of the wall and of blocks A and B. Indicate the direction of the acceleration of block B. If it is zero, state that explicitly. Draw separate free-body diagrams for blocks A and B and label the forces as described on page 89. Identify any Third Law companion forces on your diagrams using tick marks like those used in Example 6.1. Rank the magnitudes of all the horizontal forces that you identified above in order from largest to smallest. Explain your reasoning. Determine the magnitude of each of the vertical forces on block A. (Use the g 10 m/s^2. ) If it is not possible to determine one of these, explain why not.
The vertical forces on block A are: the force of gravity acting downwards with a magnitude of 40 N, and the normal force of the wall acting upwards with a magnitude of 40 N. It is not possible to determine the magnitude of the frictional force between block A and block B without knowing the coefficient of static friction.
The force of gravity on block A is equal to its mass (4 kg) times the acceleration due to gravity (10 m/s^2), which gives a magnitude of 40 N. Since block A is in contact with the wall, there must be a normal force acting on it from the wall to counteract the force of gravity. This normal force has the same magnitude as the force of gravity on block A. Therefore, the magnitude of the normal force of the wall on block A is also 40 N.
The frictional force between block A and block B depends on the coefficient of static friction between the two surfaces in contact and the normal force of block A on block B. Since we are not given the coefficient of static friction, we cannot determine the magnitude of the frictional force.
To know more on frictional force
https://brainly.com/question/14662717
#SPJ4