Answer:
The derivative does not exist at the extremum (-2, 0).
Step-by-step explanation:
Given function:
[tex]f(x)=(x+2)^{\frac{2}{3}}[/tex]
To differentiate the given function, use the chain rule and the power rule of differentiation.
[tex]\boxed{\begin{minipage}{5.4 cm}\underline{Chain Rule of Differentiation}\\\\If $y=f(u)$ and $u=g(x)$ then:\\\\$\dfrac{\text{d}y}{\text{d}x}=\dfrac{\text{d}y}{\text{d}u}\times\dfrac{\text{d}u}{\text{d}x}$\\\end{minipage}}[/tex]
[tex]\boxed{\begin{minipage}{5.4 cm}\underline{Power Rule of Differentiation}\\\\If $y=x^n$, then $\dfrac{\text{d}y}{\text{d}x}=nx^{n-1}$\\\end{minipage}}[/tex]
[tex]\begin{aligned}\textsf{Let}\;u &= x+2& \implies f(u) &= u^{\frac{2}{3}}\\\\\implies \dfrac{\text{d}u}{\text{d}{x}}&=1 &\implies \dfrac{\text{d}y}{\text{d}u}&=\dfrac{2}{3}u^{(\frac{2}{3}-1)}=\dfrac{2}{3}u^{-\frac{1}{3}}\end{aligned}[/tex]
Apply the chain rule:
[tex]\implies f'(x) = \dfrac{\text{d}y}{\text{d}{u}} \cdot \dfrac{\text{d}u}{\text{d}{x}}[/tex]
[tex]\implies f'(x) = \dfrac{2}{3}u^{-\frac{1}{3}} \cdot1[/tex]
[tex]\implies f'(x) = \dfrac{2}{3}u^{-\frac{1}{3}}[/tex]
Substitute back in u = x + 2:
[tex]\implies f'(x) = \dfrac{2}{3}(x+2)^{-\frac{1}{3}}[/tex]
[tex]\implies f'(x) = \dfrac{2}{3(x+2)^{\frac{1}{3}}}[/tex]
An extremum is a point where a function has a maximum or minimum value. From inspection of the given graph, the minimum point of the function is (-2, 0).
To determine the value of the derivative at (-2, 0), substitute x = -2 into the differentiated function.
[tex]\begin{aligned}\implies f'(-2) &= \dfrac{2}{3(-2+2)^{\frac{1}{3}}}\\\\ &= \dfrac{2}{3(0)^{\frac{1}{3}}}\\\\&=\dfrac{2}{0} \;\;\;\leftarrow \textsf{unde\:\!fined}\end{aligned}[/tex]
As the denominator of the differentiated function at x = -2 is zero, the value of the derivative at (-2, 0) is undefined. Therefore, the derivative does not exist at the extremum (-2, 0).
From the given graph, how many students worked at least 10 hours per week?
Answer:
39.
Step-by-step explanation:
From the group of 10-14 hours worked per week, 8 students.
From the group of 15-19 hours worked per week, 4 students.
From the group of 20-24 hours worked per week, 12 students.
From the group of 25-29 hours worked per week, 8 students.
From the group of 30-34 hours worked per week, 4 students.
And finally, from the group of 35+ hours worked per week, 3 students.
So, 8+4+12+8+4+3 = 39 students.
ABC ~ DFE , solve for X please help
Step-by-step explanation:
x+2 is to 4 as 28 is to 7
(x+2) / 4 = 28 / 7 <====solve for 'x'
x+2 = 16
x = 14
I need help with this
By answering the presented question, we may conclude that As a result, the slope equation for the line perpendicular to y = 1/4 and passing through (-6,9) is x = -6.
what is slope?Slope is the slope of the regression of a curve or a line in mathematics. It serves as a measure of the way the como of a formula varies once the x-value alters. The slope of a line is commonly symbolised by the letter m and may be computed as follows: m = (y2 - y1) / (x2 - x1) (x1, y1) and (x2, y2) have been any 2 things on the line. A line's slopes might be favorable, zero, zero, or unknown. A positive slope signifies that the line ascends to left to right, even though a negative slope indicates that now the line drops from left to right.
We must first determine the slope of a line perpendicular to the line y = 1/4 in order to derive its equation.
Because y = 1/4 is a horizontal line, its slope is zero. The slope of a line perpendicular to this line is the inverse of the slope of y = 1/4.
The negative reciprocal of 0 is undefined, although the perpendicular line can be considered a vertical line. The equation of a vertical line going through the point (-6,9) is x = -6.
As a result, the equation for the line perpendicular to y = 1/4 and passing through (-6,9) is x = -6.
To know more about slope visit:
https://brainly.com/question/3605446
#SPJ1
The equation of a perpendicular line passing through a point (x1, y1) may be expressed in the form: if the slope-intercept form of the equation of the original line is [tex]y = mx + b[/tex] , where m is the slope and b is the y-intercept, then Thus, option A is correct.
What is the equation for perpendicular line?The given equation is [tex]y = 7 - 11x[/tex] .
In order to determine the equation of the line perpendicular to this one, we must first determine its slope. Given that x has a -11 coefficients, the slope of the given line is -11.
The slope of the line we are looking for will be 1/11, which is the negative reciprocal of -11 because it is perpendicular to the line we are looking for.
Using the point-slope form of a line's equation, we can determine the equation of the line passing through (-6,-9) and having a slope of 1/11:
[tex]y - (-9) = (1/11)(x - (-6))[/tex]
Simplifying this equation gives:
[tex]y + 9 = (1/11)(x + 6)[/tex]
Multiplying both sides by 11 gives:
[tex]11y + 99 = x + 6[/tex]
Subtracting 6 from both sides gives:
[tex]x = 11y + 93[/tex]
Therefore, the answer is A. [tex]x = -9[/tex] .
Learn more about equation here:
https://brainly.com/question/29657983
#SPJ1
Mar 10, 11:04:59 PM
What is the slope of the line that passes through the points (9, 2) and
(9, 27)? Write your answer in simplest form.
Answer: There is no slope.
Step-by-step explanation:
First, we use the slope-intercept form to find out the slope. The slope-intercept form formula is : m = y2 - y1 / x2 - x1.
m = (27 - 2) / (9 - 9)
m = 25 / 0
m = undefined
This isn't a positive, nor negative slope, rather a slope called "undefined". (Think of every slope as a hill for your skateboard, if it's easier to remember.) And since the x is 0, x is stagnant, making the y and number that doesn't move from the x-coordinates. So, The entered points belong to a vertical line. There is no slope.
Hope this helps.
find the probability of not spinning red on either spin. (not red on the first spin and not red on the second spin.)
The probability of not spinning red on either spin (not red on the first spin and not red on the second spin) is 1/12
The probability of an event is a number that indicates how likely the event is to do. It's expressed as a number in the range from 0 and 1, or, using chance memorandum, in the range from 0 to 100. The more likely it's that the event will do, the advanced its probability. The probability of an insolvable event is 0; that of an event that's certain to do is 1.
It is know to us that Probability (Red) = 3/6 = 1/2
also Probability (Blue) = 2/6 = 1/3
and Probability (CYAN) = 1/6, therefore,
a) Probability ( CYAN then red) = 1/6 x 1/2 = 1/12
b) Probability ( CYAN then Blue) = 1/6 x 1/3 = 1/18
c) Probability ( no Cyan on 2 spins) = (1/2+1/3) x (1/2+1/3) = 5/6 x 5/6 = 25/36
To learn more about Probability, click here:
brainly.com/question/30034780
#SPJ4
Complete question:
The spinner below is spun twice. If the spinner lands on a border, that spin does not count and spin again. It is equally likely that the spinner will land in each of the six sectors.
REDREDREDBLUEBLUECYAN
For each question below, enter your response as a reduced fraction.
a) Find the probability of spinning cyan on the first spin and red on the second spin.
b) Find the probability of spinning cyan on the first spin and blue on the second spin.
c) Find the probability of NOT spinning cyan on either spin. (Not cyan on the first spin and not cyan on the second spin.)
Please answer these correctly asap
Answer:
Step-by-step explanation:
13. [tex]\frac{4}{20}*100= 20[/tex]%
14. [tex]\frac{2}{25}*100=8[/tex]%
15. [tex]\frac{35}{50}*100=70[/tex]%
16. [tex]\frac{150}{200} *100=75[/tex]%
17. [tex]\frac{4}{100}*x=56\\ 56*\frac{100}{4}=1400\\[/tex]days
Mr. wings class collected empty soda, cans for recycling project. each of the 20 students had to collect 40 cans. Each can has a mass of 15 grams. How many kilograms of cans did the class collect to recycle?
A 0.6 kg.
B 12 kg
C 12,000 kg
D 12,000,000 kg
Step-by-step explanation:
40 cans/student X 20 students X 15 gram/can = 12 000 gm = 12 kg
Imagine that there is an urn containing 5 blue chips and 5 red chips where chips are of equal dimensions and all chips in the urn at a time are equally likely to be selected. Let
X
denote the total number of blue chips obtained when 3 consecutive chips are drawn from the urn without replacement. (a) (10 points) Compute the probability that
X=3
The probability that X = 3 is 1/12.
To compute the probability that X = 3, we need to consider all possible ways of drawing three chips and count the number of ways in which we obtain three blue chips.
The total number of ways of drawing three chips from the urn without replacement is:
10C3 = (10!)/(3!7!) = 120
This is because we need to choose 3 chips out of the 10 in the urn, and the order in which we draw them does not matter.
Now, we need to count the number of ways in which we can obtain three blue chips. Since there are 5 blue chips in the urn, the number of ways of choosing 3 blue chips out of 5 is:
5C3 = (5!)/(3!2!) = 10
Therefore, the probability of obtaining three blue chips is:
P(X = 3) = 10/120 = 1/12
Hence, the probability that X = 3 is 1/12.
Learn more about probability at
brainly.com/question/11234923
#SPJ4
The probability that X which denotes the total number of blue chips obtained when 3 consecutive chips are drawn from the urn without replacement is 1/12.
To calculate the probability that X = 3, the first step is to consider all the possible ways in which three chips can be drawn and count the number of ways in which we obtain three blue chips.
The total number of ways of drawing three chips from the urn without replacement is:
¹⁰C₃ = (10!)/(3!)(7!) = 120
This is because we need to choose 3 chips out of the 10 in the urn, and the order in which we draw them does not matter. Now, we need to count the number of ways in which we can obtain three blue chips. Since there are 5 blue chips in the urn, the number of ways of choosing 3 blue chips out of 5 is:
⁵C₃ = (5!)/(3!)(2!) = 10
Therefore, the probability of obtaining three blue chips is:
P(X = 3) = 10/120 = 1/12
Hence, the probability that X = 3 is 1/12.
Learn more about probability at
brainly.com/question/11234923
#SPJ4
Directions: Find the prime factors of the polynomials.
1. 2a2 - 2b2
2. 6x2 - 6y2
3. 4x2 - 4
4. ax2 - ay2
5. cm2 - cn2
6. st2 - s
7. 2x2 - 18
8. 2x2 - 32
9. 3x2 - 27y2
10. 18m2 - 8
11. 12a2 - 27b2
12. 63c2 - 7
13. x3 - 4x
14. y3 - 25y
15. z3 - z
16. 4c3 - 49c
17. 9db2 - d
18. 4a3 - ab2
19. 4a2 - 36
20. x4 - 1
21. 3x2+ 6x
22. 4r2 - 4r - 48
23. x3 - 7x2 + 10x
24. 4x2 -6 x - 8
25. 16x2 - x2 v 4
The prime factors of the given polynomial are 1. 2(a + b)(a - b), 2. 6(x + y)(x - y).
What is factoring?A mathematical equation is factored when it is divided into smaller parts, or factors, that may be multiplied together to create the original expression. Mathematicians can benefit from factoring for a variety of reasons. It can aid in the simplification of complicated phrases, making them simpler to use and comprehend. By dividing an expression into its component parts and making each factor equal to zero, it may also be used to solve equations. In algebra, factoring is crucial for solving quadratic equations, locating polynomial roots, and factoring huge integers.
The given expressions is 2a² - 2b².
Factor out 2 and using the difference of squares identity we have:
2(a² - b²) = 2(a + b)(a - b)
2. 6x² - 6y²
6(x² - y²) = 6(x + y)(x - y)
Hence, the prime factors of the given polynomial are 1. 2(a + b)(a - b), 2. 6(x + y)(x - y).
Learn more about factors here:
https://brainly.com/question/14549998
#SPJ1
Which is not a good way to protect yourself from fraud? O A. Keeping your personal information private B. Shredding or locking up your important documents OC. Using encrypted websites when entering bank account information D. Sharing your passwords with others
write and equation to state the following: a varies jointly with b and the square root of c and inversely with the cube of d.
The equation that expresses the joint variation of a with b and the square root of c, and the inverse variation of a with the cube of d is:
[tex]a = k * \frac{(b * \sqrt{c})}{d^3}[/tex]
In mathematics, A variation equation is an equation that describes how one variable (the dependent variable) changes with respect to changes in one or more other variables (the independent variables). There are several types of variation equations, including direct variation, inverse variation, joint variation, and combined variation.
Now let's consider the given question:
It is given that,
a varies jointly with b and the square root of c, means
[tex]a \propto b[/tex] and [tex]a\propto \sqrt{c}[/tex].
It is also given,
a varies inversely with the cube of d, means
[tex]a \propto \frac{1}{d^3}[/tex]
Then by combining those, we can write
[tex]a \propto \frac{(b * \sqrt{c})}{d^3}[/tex]
The equation that expresses the joint variation of a with b and the square root of c, and the inverse variation of a with the cube of d is:
[tex]a = k * \frac{(b * \sqrt{c})}{d^3}[/tex]
Where k is the constant of proportionality. This equation states that as b and the square root of c increase, and as d decreases, the value of a increases proportionally. The constant of proportionality k depends on the specific values of a, b, c, d, and the units of measurement being used.
Learn more about variation
brainly.com/question/29149263
#SPJ4
which of the following represents the percentage of students who have disabilities in both reading and math?
The percentage of students who have disabilities in both reading and math is 20%.
The percentage of students who have disabilities in both reading and math refers to the proportion of students who are identified as having a disability in both reading and math. This means that these students require additional support and accommodations to help them succeed academically. Among the total number of students, 20% of them have disabilities in both reading and math.
Students with disabilities in reading and math may struggle with comprehension, fluency, or other aspects of these subjects. They may require specialized instruction, such as one-on-one tutoring, assistive technology, or modifications to classroom materials or assessments, in order to fully participate in the curriculum.
It is important for schools and educators to identify students who have disabilities in both reading and math early on and provide them with the necessary support and accommodations to help them succeed. This can help to ensure that these students are able to access high-quality education and achieve their full potential, despite their disabilities.
The complete question is
Which of the following represents the percentage of students who have disabilities in both reading and math?
80%30%20%50%To know more about the Disabilities, here
https://brainly.com/question/29899248
#SPJ4
A sports car accelerates from a stopped position (0 m/s) to 27.7 m/s in 2.4 seconds. What is the acceleration of the car?
Using simple division we know that the acceleration per second is 11.54 m/s.
What is division?Multiplication is the opposite of division.
If 3 groups of 4 add up to 12, then 12 divided into 3 groups of equal size results in 4 in each group.
Creating equal groups or determining how many people are in each group after a fair distribution is the basic objective of division.
The division is a mathematical process that includes dividing a sum into groups of equal size.
For instance, "12 divided by 4" translates to "12 shared into 4 equal groups," which would be 3 in our example.
So, to find the acceleration per second:
We need to perform division as follows:
= 27.7/2.4
= 11.54
Therefore, using simple division we know that the acceleration per second is 11.54 m/s.
Know more about division here:
https://brainly.com/question/25289437
#SPJ1
Suppose you have a cache of radium, which has a half-life of approximately 1590 years. How long would you have to wait for 1/7 of it to disappear?
You would have to wait ___ years for 1/7 of the radium to disappear.
Accοrding tο the half-life fοrmula, we wοuld have tο wait apprοximately 4975 years fοr 1/7 οf the radium tο decay.
What is Expοnential Decay ?Expοnential decay is a mathematical prοcess in which a quantity decreases οver time in a manner prοpοrtiοnal tο its current value. This means that the rate οf decay is prοpοrtiοnal tο the amοunt οf the substance remaining, and as the amοunt οf the substance decreases, the rate οf decay alsο decreases. The fοrmula fοr expοnential decay is οften written as:
N(t) = N₀ *[tex]e^{(-kt)[/tex]
where N(t) is the amοunt οf substance remaining at time t, N₀ is the initial amοunt οf the substance, k is the decay cοnstant, and e is the base οf the natural lοgarithm.
The half-life οf radium is apprοximately 1590 years, which means that after 1590 years, half οf the οriginal radium will have decayed. Therefοre, we can use the half-life fοrmula tο find the amοunt οf time it wοuld take fοr 1/7 οf the radium tο decay:
N = N₀[tex]* (1/2)^{(t/t1/2)[/tex]
where N is the final amοunt (1/7 οf the οriginal amοunt), N0 is the initial amοunt, t is the time elapsed, and t1/2 is the half-life.
We can rearrange this fοrmula tο sοlve fοr t:
t = t1/2 * lοg2(N₀/N)
t = 1590 years * lοg2(7)
t ≈ 4975 years
Therefοre, we wοuld have tο wait apprοximately 4975 years fοr 1/7 οf the radium tο decay.
To know more about exponential Decay visit:
brainly.com/question/2193799
#SPJ1
Graph the equation y = 3/2x -2
Graph these twο pοints (0, -2) & (4/3, 0) and yοu have yοur slοpe graphed fοr the equatiοn y = 3/2x -2.
What is an equatiοn?
An equatiοn is a mathematical statement containing two algebraic expressiοns flanked by equal signs (=) on either side.
It shows that the relationship between the left and right printed expressiοns is equal.
All fοrmulas have LHS = RHS (left side = right side).
Yοu can sοlve equatiοns tο determine the values οf unknοwn variables that represent unknοwn quantities.
If a statement does not have an equals sign, it is not an equatiοn. A mathematical statement called an equatiοn cοntains the symbοl "equal tο" between twο expressiοns οf equal value.
Tο find the x-intercept, substitute y = 0 and sοlve fοr x. Tο find the y-intercept, substitute x = 0 and sοlve fοr y.
y = 3/2(0) -2
y = -2
⇒ (0, -2)
And for x
0 = 3/2x -2
2 = 3/2x
x = 4/3
(4/3, 0)
Now graph these two points and you have your slope graphed
Hence, The graph of the equation is given below.
To learn more about equations from the given link:
brainly.com/question/2972832
#SPJ1.
Question 12 (2 points)
Among the seniors at a small high school of 150 total students, 80 take Math, 41
take Spanish, and 54 take Physics. 10 seniors take Math and Spanish. 19 take Math
and Physics. 12 take Physics and Spanish. 7 take all three.
How many seniors were taking none of these courses?
Note: Consider making a Venn Diagram to solve this problem.
0
5
9
22
150 - 141 = 9 seniors are not enrolled in any classes.
What is statistics, and how can it be used?The area of mathematics known as statistics is used to gather, analyse, and interpret data. To predict the future, determine the likelihood that a specific event will occur, or learn more about a survey, statistics can be employed.
The Venn diagram reveals the amount of seniors enrolling in at least one of the courses as follows:
80 + 41 + 54 - 10 - 19 - 12 + 7
= 141
Therefore, 150 - 141 = 9 seniors are not enrolled in any classes.
= 9
So, there are 9 seniors taking none of the courses. Answer: 9.
To know more about statistics visit:-
https://brainly.com/question/30523154
#SPJ1
.2 In the diagram below, given that XY = 3cm, XZY = 30° and YZ = x, is it possible to solve for x using the theorem of Pythagoras? Motivate your answer. Show Calculations
Sin 30 =3/x
1/2=3/x
x=6
5) A research study gives a 95% confidence interval for the proportion of subjects helped by a new anti- inflammatory drug is (0.56, 0.65). (a) Interpret this interval in the context of the problem. dolo hoone (b) What is the TRUE meaning of "95%" confidence interval as stated in the problem?
(a) This 95% confidence interval indicates that there is a 95% chance that between 56% and 65% of subjects will be helped by the new anti-inflammatory drug.
(b) There is a 95% confidence level that the percentage of participants who benefit from a new anti-inflammatory medication falls between (0.56, 0.65).
(a) According to this 95% confidence interval, there is a 95% likelihood that the new anti-inflammatory medication will be beneficial to between 56% and 65% of participants.
(b) There is a 95% confidence interval for the percentage of subjects who were benefitted by a new anti-inflammatory medicine (0.56, 0.65).
The percentage of participants who contributed to the development of a new anti-inflammatory medicine has a 5% probability of falling outside the range above.
To learn more about confidence interval link is here
brainly.com/question/13481020
#SPJ4
Pls help There is a 20% chance that a customer walking into a store will make a purchase. A computer was used to generate 5 sets of random numbers from 0 to 9, where the numbers 0 and 1 represent a customer who walks in and makes a purchase.
A two column table with title Customer Purchases is shown. The first column is labeled Trial and the second column is labeled Numbers Generated.
What is the experimental probability that at least one of the first three customers that walks into the store will make a purchase?
A) 60%
B) 13%
C) 40%
D) 22%
The experimental probability that at least one of the first three customers that walks into the store will make a purchase is 60%.
What is experimental probability?It is determined by counting the number of times an event occurs in a given experiment and dividing the total number of trials by the number of successful outcomes.
The experimental probability that at least one of the first three customers that walks into the store will make a purchase is calculated by dividing the total number of customers who make a purchase by the total number of customers who enter the store.
In this case, there are 3 trials and 2 customers who make a purchase.
The experimental probability is 3 by 5 which is the total number of trials.
Thus, the experimental probability
=3/5
= 60%.
For more questions related to event
https://brainly.com/question/14350753
#SPJ1
Jacobil and her friends are making a large homemade circular pizza. Jacobi cut her piece of pizza and it formed a sector with a radius of 9 Inches and a central angle measuring 75°. If the other 5 friends
equally share the remaining portion of the pizza, what is the approximate area of pizza each person receives? Use 3.14 for and round your answer to the nearest hundredth.
Jacobi get area of pizza is 52.987 in²
5 friends getting equally share each one area of pizza is 40.27 in²
Area of sectorAny point in a plane that is a certain distance away from another point forms a circle. The fixed point is known as the center of the circle and the fixed distance is known as the radius of the circle.
The formula for calculating a circle's sector's area is (∅/360°) ×π×r²
Jacobi get area of pizza =(75/360°) × π×9²=52.987in²
5 friends getting pizza with each central angle measuring=360°-75°/5
=57°
5 friends getting each one area of pizza = (57/360°) × π×9²
40.27in².
To know more about area, visit:
https://brainly.com/question/27683633
#SPJ1
When a tuba is played, the player makes a buzzing sound and blows into one end of a tube that has an effective length of 3.50 m. The other end of the tube is open. If the speed of sound in air is 343 m/s, what is the lowest frequency the tuba can produce?Please show all work and formulas to receive credit for best answer
The lowest frequency the tuba can produce is approximately 49 Hz.
The lowest frequency produced by the tuba is called its fundamental frequency, which corresponds to the longest wavelength that can fit in the tube. The wavelength of a sound wave is related to its frequency and the speed of sound by the equation
wavelength = speed of sound / frequency
In this case, the effective length of the tube is equal to half of the wavelength of the fundamental frequency (because the tube is open at one end and closed at the other), so we can write
wavelength = 2 × effective length = 7.00 m
Solving for the frequency using the above equation, we get
frequency = speed of sound / wavelength = 343 m/s / 7.00 m ≈ 49 Hz
Learn more about frequency here
brainly.com/question/15540326
#SPJ4
If A B C are three matric such that AB=AC such that A=C then A is
Answer:
invertible
Step-by-step explanation:
If A is invertible then ∣A∣ =0
for a given sample size, when we increase the probability of a type i error, the probability of a type ii error
Increasing the probability of a type I error generally leads to a decrease in the probability of a type II error, and vice versa.
What is type 1 and type II error?If your data have statistical significance, this suggests that even if the null hypothesis is correct, they are extremely improbable to occur. You would then reject your null hypothesis in this situation. Yet occasionally, this may be a Type I mistake.
If your results are not statistically significant, the null hypothesis is likely to be correct and they have a high probability of occurring. As a result, your null hypothesis is not rejected. Yet occasionally, this may be a Type II mistake.
Learn more about type II error here:
https://brainly.com/question/8174121
#SPJ1
Consider the initial value problem y⃗ ′=[33????23????4]y⃗ +????⃗ (????),y⃗ (1)=[20]. Suppose we know that y⃗ (????)=[−2????+????2????2+????] is the unique solution to this initial value problem. Find ????⃗ (????) and the constants ???? and ????.
The unique solution to the initial value problem of differential equation is y(t) = -t^2 + 2t + 3sin(3t) - 1 with e(t) = -t^2 + 2t + 3sin(3t) - 9, a = 2, and B = -21.
To find the solution to the initial value problem, we first need to solve the differential equation.
Taking the derivative of y(t), we get:
y'(t) = -2t + a
Taking the derivative again, we get:
y''(t) = -2
Substituting y''(t) into the differential equation, we get:
y''(t) + 2y'(t) + 10y(t) = 20sin(3t)
Substituting y'(t) and y(t) into the equation, we get:
-2 + 2a + 10(-2t + a) = 20sin(3t)
Simplifying, we get:
8a - 20t = 20sin(3t) + 2
Using the initial condition y(0) = 2, we get:
y(0) = -2(0) + a = 2
Solving for a, we get:
a = 2
Using the other initial condition y'(0) = 21, we get:
y'(0) = -2(0) + 2(21) + B = 21
Solving for B, we get:
B = -21
Therefore, the solution to the initial value problem is:
y(t) = -t^2 + 2t + 3sin(3t) - 1
Thus, we have e(t) = y(t) - 8, so
e(t) = -t^2 + 2t + 3sin(3t) - 9
and a = 2, B = -21.
To know more about differential equation:
https://brainly.com/question/14620493
#SPJ4
_____The given question is incomplete, the complete question is given below:
Consider the initial value problem >= [22. 2.1]+20). 361) = [2] Suppose we know that (t) = -2t + a 21? + is the unique solution to this initial value problem. Find e(t) and the constants and B. a = B= 8(t) =
Thomas bought 120 whistles, 168 yo-yos and 192 tops . He packed an equal amount of items in each bag.
a) What is the maximum number of bag that he can get?
Answer:
To find the maximum number of bags that Thomas can pack, we need to find the greatest common divisor (GCD) of 120, 168, and 192.
Prime factorizing the three numbers:
120 = 2^3 x 3 x 5
168 = 2^3 x 3 x 7
192 = 2^6 x 3
The GCD is the product of the common prime factors with the lowest exponents, which is 2^3 x 3 = 24.
So, Thomas can pack the items into 24 bags, each containing an equal number of whistles, yo-yos, and tops.
Answer:
Step-by-step explanation:
To find the maximum number of bags that Thomas can pack, we need to find the greatest common divisor (GCD) of 120, 168, and 192.
We can start by finding the prime factorization of each number:
120 = 2^3 × 3 × 5
168 = 2^3 × 3 × 7
192 = 2^6 × 3
Then we can find the GCD by taking the product of the smallest power of each common prime factor:
GCD = 2^3 × 3 = 24
Therefore, Thomas can pack a maximum of 24 bags.
Suppose a student takes mathematics and economics as subjects. He obtains the following marks on his tests 82% for maths and 89% for economics. Using the available information determine how the student performed relative to the rest of the class in each subject. Describe this in terms of where his z-scores lie on the normal distribution curve. In which subject did he perform better?
Information
Mathematics
Mean 68
Standard deviation 8
Economics
Mean 80
Standard deviation 6
Answer:
The student's z-score for mathematics is 0.75, which means that his score is 0.75 standard deviations above the mean. This puts him in the upper quartile of the class, indicating that he performed better than 75% of the class.
The student's z-score for economics is 1.5, which means that his score is 1.5 standard deviations above the mean. This puts him in the upper quintile of the class, indicating that he performed better than 80% of the class.
The student performed better in economics than in mathematics.
Please see attached picture.
Need help answering.
In the given graph, the x-intercepts are (2,0) and (6,0).
The axis of symmetry is the vertical line that passes through the vertex. Since the vertex is at (4,-2), the axis of symmetry is the line x = 4.
The interval on which the graph is increasing is (-∞,4), and the interval on which it is decreasing is (4,∞).
The sign of the leading coefficient is positive, since it is 1/2.
To find the equation of the quadratic function, we start by using the vertex form:
[tex]y = a(x - h)^2 + k[/tex]
where (h, k) is the vertex. Plugging in the given vertex (4,-2), we get:
[tex]y = a(x - 4)^2 - 2[/tex]
Next, we use the other two points to find two additional equations:
[tex]6 = a(8 - 4)^2 - 2 (plugging in (8,6))\\0 = a(2 - 4)^2 - 2 (plugging in (2,0))[/tex]
Simplifying these equations, we get:
[tex]6 = 16a - 2\\8a = 4 -- > a = 1/2 \\0 = 4a - 2 \\4a = 2 -- > a = 1/2 \\[/tex]
So the equation of the quadratic function is:
[tex]y = (1/2)(x - 4)^2 - 2[/tex]
Now, we can answer the questions:
The y-intercept is the point where the graph intersects the y-axis. To find it, we set x = 0 in the equation:
[tex]y = (1/2)(0 - 4)^2 - 2 = 6[/tex]
So the y-intercept is (0,6).
To find the x-intercepts, we set y = 0 in the equation:
[tex]0 = (1/2)(x - 4)^2 - 2[/tex]
Simplifying, we get:
[tex](x - 4)^2 = 4\\ - 4 = \pm 2 \\= 2, 6[/tex]
So the x-intercepts are (2,0) and (6,0).
The axis of symmetry is the vertical line that passes through the vertex. Since the vertex is at (4,-2), the axis of symmetry is the line x = 4.
The interval on which the graph is increasing is (-∞,4), and the interval on which it is decreasing is (4,∞).
The sign of the leading coefficient is positive, since it is 1/2.
To learn more about graphs from given link
https://brainly.com/question/21364844
#SPJ1
In the year 1985, a house was valued at $108,000. By the year 2005, the value had appreciated to $148,000. What was the annual growth rate percentage between 1985 and 2005? Assume that the value continued
to grow by the same percentage. What was the value of the house in the year 2010?
Answer:
To find the annual growth rate percentage, we can use the formula:
annual growth rate = [(final value / initial value)^(1/number of years)] - 1
where "final value" is the value in the ending year, "initial value" is the value in the starting year, and "number of years" is the total number of years between the starting and ending years.
Using the given values, we have:
annual growth rate = [(148,000 / 108,000)^(1/20)] - 1
= 0.0226 or 2.26%
So the house appreciated at an annual growth rate of 2.26%.
To find the value of the house in 2010, we can use the same growth rate to project the value from 2005 to 2010:
value in 2010 = 148,000 * (1 + 0.0226)^5
= $175,465.11 (rounded to the nearest cent)
Therefore, the value of the house in the year 2010 was $175,465.11.
Let
X 1
,…,X n
be i.i.d. random variables with the inverse Gaussian distribution whose pdf is given by
f(x∣μ,λ)=( 2πx 3
λ
) 1/2
exp[− 2μ 2
x
λ(x−μ) 2
],0
Find a sufficient statistic for
(μ,λ)
A sufficient statistic for the parameters (μ, λ) is T(X) = (T1(X), T2(X)) where T1(X) = Σ Xi^(-1) and T2(X) = Π Xi.
To find a sufficient statistic for (μ,λ), we can use the factorization theorem which states that a statistic T(X) is sufficient for a parameter θ if and only if the joint probability distribution of X can be factorized as follows
f(x∣θ) = g[T(x)∣θ]h(x)
where g and h are non-negative functions that do not depend on θ.
Using the given probability density function, we have
f(x∣μ,λ) = (λ/2πx^3)^(1/2)exp[−λ(x-μ)^2/(2μ^2 x) ]
= [(λ/2π)^(1/2)/x^(3/2)] exp[−λ(x-μ)^2/(2μ^2 x)]
= [(λ/2π)^(1/2)/x^(3/2)] exp[−(λ/2μ^2) x + (λμ/μ^2) x^(-1)]
= [exp(λμ/μ^2)/(2πλ)^(1/2)] [x^(-3/2) exp(−λ/2μ^2 x)]
Let's define two functions as follows
T1(X) = Σ Xi^(-1)
T2(X) = Π Xi
Then, we can write the joint pdf of X as follows
f(x1, x2, ..., xn | μ, λ) = [exp(λμ/μ^2)/(2πλ)^(1/2)] [Π xi^(-3/2) exp(−λ/2μ^2 xi)]
= [exp(λμ/μ^2)/(2πλ)^(1/2)] [Π xi^(-3/2)] [exp(−λ/2μ^2 Σ xi)]
Notice that the term [Π xi^(-3/2)] does not depend on (μ, λ), and can be factored out. Therefore, the joint pdf can be rewritten as
f(x1, x2, ..., xn | μ, λ) = [Π xi^(-3/2)] [exp(λμ/μ^2)/(2πλ)^(1/2)] [exp(−λ/2μ^2 Σ xi)]
= g(T1(X), T2(X) | μ, λ) h(X)
where g(T1(X), T2(X) | μ, λ) = [exp(λμ/μ^2)/(2πλ)^(1/2)] [exp(−λ/2μ^2 Σ xi)] and h(X) = [Π xi^(-3/2)].
Learn more about probability density function here
brainly.com/question/31039386
#SPJ4
The given question is incomplete, the complete question is:
Let X1,…,Xn be i.i.d. random variables with the inverse Gaussian distribution having pdf is given by f(x∣μ,λ)= (λ/2πx^3)^(1/2)exp[−λ(x-μ)^2/(2μ^2 x) ] 0 <x <∞, Find a sufficient statistic for
(μ,λ)
Danielle is saving money to buy a new computer game. She needs to save at least 45 dollars to buy the
game. She has saved 11 dollars so far. Let n represent the number of dollars she still needs to save in order to buy the game. Which number sentence best describes this situation?
Answer choices:
A. 11 + n ≥ 45
B. 11 + n ≤ 45
C. 11n ≥ 45
D. 11n ≤ 45
Answer:
Step-by-step explanation:
A