Answer:
for stunt performers and this is lady's work ( paragraph 6)
Please help me, thanks!!!!
Find the next three terms: −14,−17,−20,−23,...
Answer:
-26, -29, -32
Have a great day!
Step-by-step explanation:
A bullet is fired straight upward with an initial speed of 720 ft/s. It’s path is modeled by the equation h=-16t^2 + 720t, where h is the height of the bullet t seconds after it was fired. When does the bullet reach a height of 4,000 feet?
Answer:
The bullet reaches a height of 4000 feet after 6.49 seconds, and then, coming back down, after 38.5 seconds.
Step-by-step explanation:
Solving a quadratic equation:
Given a second order polynomial expressed by the following equation:
[tex]ax^{2} + bx + c, a\neq0[/tex].
This polynomial has roots [tex]x_{1}, x_{2}[/tex] such that [tex]ax^{2} + bx + c = a(x - x_{1})*(x - x_{2})[/tex], given by the following formulas:
[tex]x_{1} = \frac{-b + \sqrt{\bigtriangleup}}{2*a}[/tex]
[tex]x_{2} = \frac{-b - \sqrt{\bigtriangleup}}{2*a}[/tex]
[tex]\bigtriangleup = b^{2} - 4ac[/tex]
The height of the bullet after t seconds is given by:
[tex]h(t) = -16t^2 + 720t[/tex]
When does the bullet reach a height of 4,000 feet?
This is t for which [tex]h(t) = 4000[/tex]. So
[tex]4000 = -16t^2 + 720t[/tex]
[tex]16t^2 - 720t + 4000 = 0[/tex]
Dividing by 16
[tex]t^2 - 45t + 250 = 0[/tex]
So [tex]a = 1, b = -45, c = 250[/tex]
[tex]\bigtriangleup = b^{2} - 4ac = (-45)^2 - 4(1)(250) = 1025[/tex]
[tex]t_{1} = \frac{-(-45) + \sqrt{1025}}{2} = 38.5[/tex]
[tex]t_{2} = \frac{-(-45) - \sqrt{1025}}{2} = 6.49[/tex]
The bullet reaches a height of 4000 feet after 6.49 seconds, and then, coming back down, after 38.5 seconds.
Pls help I need the answer fast
Answer:
2 2/9
hope it's helpful ❤❤❤
THANK YOU.❤
asking for the “x” in simplest form please help!!
Answer:
x = -0.441 and x = -2.359
Step-by-step explanation:
The given equation is :
[tex]2(5x+7)^2-13=33[/tex]
Adding 13 to both sides of the equation.
[tex]2(5x+7)^2-13+13=33+13\\\\2(5x+7)^2=46\\\\(5x+7)^2=23[/tex]
So,
[tex]5x+7=\sqrt{23}\\\\5x+7=\pm4.795\\\\5x=4.795-7, 5x=-4.795-7\\\\5x=-2.205, 5x = -11.795\\\\x=-0.441, x=-2.359[/tex]
So, the solution of the given equation is x = -0.441 and x = -2.359.
Estimate The Product of 62.375 and 9 (I Need A Clear Answer, DO NOT PUT "SORRY I DONT KNOW BLAH BLAH BLAH I NEED A NICE AND CLEAR QUESTION )
Lamar is saving money to buy a game. So far he has saved $6, which is two-thirds of the total cost of the game. How much does the game cost?
Step-by-step explanation:
$9 because 1 third of 3 third would be $3
Write these numbers in order, starting with the smallest.
0.78
0.607
5.6
0.098
4.003
Answer:
0.098-0.607-0.78-4.003-5.6
Step-by-step explanation:
The numbers in orders that starting with the smallest should be considered as the 0.098-0.607-0.78-4.003-5.6.
Calculation of the listing numbers:Since the list of the number should be like
0.78
0.607
5.6
0.098
4.003
So here we sequence the numbers from the smallest to the largest
So it should be like 0.098-0.607-0.78-4.003-5.6.
Hence, The numbers in orders that starting with the smallest should be considered as the 0.098-0.607-0.78-4.003-5.6.
Learn more about numbers here: https://brainly.com/question/24571514
Does the point (4, 0) satisfy the equation y = x2?
What is the common difference for this arithmetic sequence?
31, 48, 65, 82, ...
Answer:
d = 17
Step-by-step explanation:
The given arithmetic sequence is :
31, 48, 65, 82, ...
We need to find the common difference for this sequence.
First term, a₁ = 31
Second term, a₂ = 48
Common difference = a₂-a₁
= 48-31
= 17
So, the common difference for this arithmetic sequence is equal to 17.
The dry cleaning fee for three pairs of pants is $18. How much will it cost to clean 11 pairs of pants?
1-Un balón de fútbol tiene un precio de $125 + IVA
1. ¿Cuánto es el IVA del balón?
A) 125 b) 200 c) 245
Answer:
b) 200
Step-by-step explanation:
The correct answer is b) 200
1) El IVA del balón es de $ 20.
2) El precio final del balón es $ 145.
1) El Impuesto al Valor Agregado (IVA) es un impuesto indirecto que se aplica sobre el precio de compra del artículo comprado, es decir, se trata de un impuesto indirecto al consumo.
El porcentaje por concepto del impuesto varía de país en país. No obstante, el valor más común en países hispanoparlantes se ubica en torno al 16 % del precio de compra del artículo.
El IVA del balón se determina mediante la siguiente operación aritmética:
[tex]\Delta C = 0.16\cdot (125)[/tex]
[tex]\Delta C = 20[/tex]
El IVA del balón es de $ 20.
2) El precio final del producto es la suma del precio de compra y el IVA, es decir:
[tex]C = 125 + 20[/tex]
[tex]C = 145[/tex]
El precio final del balón es $ 145.
Para aprender más sobre impuestos, invitamos cordialmente a ver esta pregunta verificada: https://brainly.com/question/24907444
Nota - El enunciado reporta numerosos errores tipográficos y está incompleto, el enunciado correcto y completo es el siguiente:
Un balón de fútbol tiene un precio de $ 125 + IVA.
1) ¿Cuánto es el IVA del balón? a) 20, b) 145, c) 325
2) ¿Cuál es el precio final con IVA del balón? a) 125, b) 200, c) 145
Does this expression represent the sum 13.76 + 2.8?
fourteen and four hundredths
Answer:
False
Step-by-step explanation:
ir doesn't add up from what i saw
1/3 divided by what equals 1/12
Answer:
You cannot get a positive answer for this, nor can you divide. You could however divide 1/12 by 1/4 to get 1/3.
Step-by-step explanation
The number whose 1/3 is 1/12 is 4.
What is Division?The fractional bar is a horizontal bar that divides the numerator and denominator of every fraction into these two halves.
The number of parts into which the whole has been divided is shown by the denominator. It is positioned in the fraction's lower portion, below the fractional bar.How many sections of the fraction are displayed or chosen is shown in the numerator. It is positioned above the fractional bar in the upper portion of the fraction.Given:
let 1/3 divided by x equals 1/12.
So, 1/3 ÷ x = 1/12
and, 1/3 (1/x) = 1/12
1/x = 3/12
1/x = 1/4
x = 4
So, the required number is 4.
Learn more about Fraction here:
https://brainly.com/question/10354322
#SPJ2
The period between two numerals is identified as a decimal point. true or false?
Answer: TRUE!
Step-by-step explanation: Hope this helps!
Answer: True
Step-by-step explanation:
Which expression is equivalent to the given expression?
8(34a)−8
34a
6a
8(34a−1)
34a−1
Answer:
8(34a-1)
Step-by-step explanation:
Hope this helps :)
Answer:
8(34a-1)
Step-by-step explanation:
In a city election, 5,000 people voted for mayor. If the new mayor received 60% of the votes, how many people voted for the new mayor? Show how you know.
Answer:
3000
Step-by-step explanation:
100%-> 5000
60%->3000
Can someone answer the question ??
HELP ASAP NEED ANSWER
Answer:
2
Step-by-step explanation:
hope this helps
please give brainliest. Thanks! :)
Help plz dis is a lil importatnete
Following order of operations:
3^2 = 9
(10-2) = 8
Now you have :
9 + 8 x 5 -4
Multiplication is next:
9 + 40 -4
Now just add and subtract from left to right:
9 + 40 = 49
49-4 = 45
The answer is 45
Step-by-step explanation:
So first you solve whats inside of the parenthesis 10 -2 aand get 8 then you figure 3^2 which is 9 then multiplie 8 times 5 and get 40. 9 + 40 - 4 is what it is so far then add 9 to 40 which is 49 then subtract 4 and get 45!
Here is a circle.
The diameter of the circle is 9 cm.
Work out the circumference of this circle.
Give your answer correct to 3 significant figures.
12.11%2S:
Multiplying by which number is equivalent to a decrease of 8.2%?
11
A blue dress is marked down 15%. What is the sale price of the dress if the
regular price is $150?
Type your answer...
Answer:
45 dollar's ezzzzzzzzzzzzz
Given a point translated from A(1,2) to B(4,4). If a point C at (0,0) is translated in the same way, what will be its new endpoints?
A.(−3,−2)
B.(3,2)
C.(2,2)
D.(3,3)
please help
Answer:
B. (3,2)
Step-by-step explanation:
Step 1) When shifting from A(1,2) to B(4,4), the point shifted 3 units to the right (which means x=3) and 2 units upwards (which means y=2).
Step 2) So when you apply the same movements to point C(0,0), the new point will be (3,2).
See the diagram below. Step 1 is the graph on the left. Step 2 is the graph on the right. The movement is colored in green. Hope this helps!
Please help me......
Answer:
<BAC=1/2 <BOC=1/2 X=X/2(INSCRIBED ANGLE IS HALF OF CENTRAL ANGLE)
John was adding Rational Numbers. He showed his work below. What was John's error?
Explain to John how to solve it correctly.
Adding Rational Numbers Error.
Answer:
-5 3/5
Step-by-step explanation:
John's error was in adding the whole number and fractional portions separately, the fractions must be converted to improper fractions with common denominators to be added or subtracted properly so
(-7 4/5) + (2 1/5), convert to improper fractions
-39/5 + 11/5, both fractions have common denominator so we can continue
-39 + 11 = -28, so -39/5 + 11/5 = -28/5, convert back to proper fractions
-28/5 = (-25/5) + (-3/5) = -5 3/5
Find the product. 4 X 0.23
Answer:
0.92
Step-by-step explanation:
1
0.23
x. 4
———
0.92
Hope it helps
Round number 245-320
Answer:
300
Step-by-step explanation:
if you mean, 245.320
what is the equation
Answer:
n = -7
Step-by-step explanation:
3n-27-2n-8=6n
n-35=6n
-35=5n
n=-7
How do I evaluate this using trigonometric substitution?
∫dx/(81x^2+4)^2
Answer:
[tex]\displaystyle \frac{1}{144}arctan(\frac{9x}{2}) + \frac{x}{8(81x^2 + 4)} + C[/tex]
General Formulas and Concepts:
Alg I
Terms/CoefficientsFactorExponential Rule [Dividing]: [tex]\displaystyle \frac{b^m}{b^n} = b^{m - n}[/tex]Pre-Calc
[Right Triangle Only] Pythagorean Theorem: a² + b² = c²
a is a legb is a legc is hypotenuseTrigonometric Ratio: [tex]\displaystyle sec(\theta) = \frac{1}{cos(\theta)}[/tex]
Trigonometric Identity: [tex]\displaystyle tan^2\theta + 1 = sec^2\theta[/tex]
TI: [tex]\displaystyle sin(2x) = 2sin(x)cos(x)[/tex]
TI: [tex]\displaystyle cos^2(\theta) = \frac{cos(2x) + 1}{2}[/tex]
Calc
Integration Rule [Reverse Power Rule]: [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]
Integration Property [Multiplied Constant]: [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]
IP [Addition/Subtraction]: [tex]\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx[/tex]
U-Substitution
U-Trig Substitution: x² + a² → x = atanθ
Step-by-step explanation:
Step 1: Define
[tex]\displaystyle \int {\frac{dx}{(81x^2 + 4)^2}}[/tex]
Step 2: Identify Sub Variables Pt.1
Rewrite integral [factor expression]:
[tex]\displaystyle \int {\frac{dx}{[(9x)^2 + 4]^2}}[/tex]
Identify u-trig sub:
[tex]\displaystyle x = atan\theta\\9x = 2tan\theta \rightarrow x = \frac{2}{9}tan\theta\\dx = \frac{2}{9}sec^2\theta d\theta[/tex]
Later, back-sub θ (integrate w/ respect to x):
[tex]\displaystyle tan\theta = \frac{9x}{2} \rightarrow \theta = arctan(\frac{9x}{2})[/tex]
Step 3: Integrate Pt.1
[Int] Sub u-trig variables: [tex]\displaystyle \int {\frac{\frac{2}{9}sec^2\theta}{[(2tan\theta)^2 + 4]^2}} \ d\theta[/tex][Int] Rewrite [Int Prop - MC]: [tex]\displaystyle \frac{2}{9} \int {\frac{sec^2\theta}{[(2tan\theta)^2 + 4]^2}} \ d\theta[/tex][Int] Evaluate exponents: [tex]\displaystyle \frac{2}{9} \int {\frac{sec^2\theta}{[4tan^2\theta + 4]^2}} \ d\theta[/tex][Int] Factor: [tex]\displaystyle \frac{2}{9} \int {\frac{sec^2\theta}{[4(tan^2\theta + 1)]^2}} \ d\theta[/tex][Int] Rewrite [TI]: [tex]\displaystyle \frac{2}{9} \int {\frac{sec^2\theta}{[4sec^2\theta]^2}} \ d\theta[/tex][Int] Evaluate exponents: [tex]\displaystyle \frac{2}{9} \int {\frac{sec^2\theta}{16sec^4\theta} \ d\theta[/tex][Int] Rewrite [Int Prop - MC]: [tex]\displaystyle \frac{1}{72} \int {\frac{sec^2\theta}{sec^4\theta} \ d\theta[/tex][Int] Divide [ER - D]: [tex]\displaystyle \frac{1}{72} \int {\frac{1}{sec^2\theta} \ d\theta[/tex][Int] Rewrite [TR]: [tex]\displaystyle \frac{1}{72} \int {cos^2\theta} \ d\theta[/tex][Int] Rewrite [TI]: [tex]\displaystyle \frac{1}{72} \int {\frac{cos(2\theta) + 1}{2}} \ d\theta[/tex][Int] Rewrite [Int Prop - MC]: [tex]\displaystyle \frac{1}{144} \int {cos(2\theta) + 1} \ d\theta[/tex][Int] Rewrite [Int Prop - A/S]: [tex]\displaystyle \frac{1}{144} [\int {cos(2\theta) \ d\theta + \int {1} \ d\theta][/tex]Step 4: Identify Sub Variables Pt.2
Determine u-sub for trig int:
u = 2θ
du = 2dθ
Step 5: Integrate Pt.2
[Ints] Rewrite [Int Prop - MC]: [tex]\displaystyle \frac{1}{144} [\frac{1}{2} \int {2cos(2\theta) \ d\theta + \int {1 \theta ^0} \ d\theta][/tex][Int] U-Sub: [tex]\displaystyle \frac{1}{144} [\frac{1}{2} \int {cos(u) \ du + \int {1 \theta ^0} \ d\theta][/tex][Ints] Integrate [Trig/Int Rule - RPR]: [tex]\displaystyle \frac{1}{144} [\frac{1}{2} sin(u) + \theta + C][/tex][Expression] Back Sub: [tex]\displaystyle \frac{1}{144} [\frac{1}{2} sin(2 \theta) + arctan(\frac{9x}{2}) + C][/tex][Exp] Rewrite [TI]: [tex]\displaystyle \frac{1}{144} [\frac{1}{2}(2sin(\theta)cos(\theta)) + arctan(\frac{9x}{2}) + C][/tex][Exp] Multiply: [tex]\displaystyle \frac{1}{144} [sin(\theta)cos(\theta) + arctan(\frac{9x}{2}) + C][/tex][Exp] Back Sub: [tex]\displaystyle \frac{1}{144} [sin(arctan(\frac{9x}{2}))cos(arctan(\frac{9x}{2})) + arctan(\frac{9x}{2}) + C][/tex]Step 6: Triangle
Find trig values:
[tex]\displaystyle tan\theta = \frac{9x}{2}[/tex]
[tex]\displaystyle \theta = arctan(\frac{9x}{2})[/tex]
tanθ = opposite / adjacent; solve hypotenuse of right triangle, determine trig ratios:
sinθ = opposite / hypotenuse
cosθ = adjacent / hypotenuse
Leg a = 2
Leg b = 9x
Leg c = ?
Sub variables [PT]: [tex]\displaystyle 2^2 + (9x)^2 = c^2[/tex]Evaluate exponents: [tex]\displaystyle 4 + 81x^2 = c^2[/tex][Equality Property] Square root both sides: [tex]\displaystyle \sqrt{4 + 81x^2} = c[/tex]Rewrite: [tex]c = \sqrt{81x^2 + 4}[/tex]Substitute into trig ratios:
[tex]\displaystyle sin\theta = \frac{9x}{\sqrt{81x^2 + 4}}[/tex]
[tex]\displaystyle cos\theta = \frac{2}{\sqrt{81x^2 + 4}}[/tex]
Step 7: Integrate Pt.3
[Exp] Sub variables [TR]: [tex]\displaystyle \frac{1}{144} [\frac{9x}{\sqrt{81x^2 + 4}} \cdot \frac{2}{\sqrt{81x^2 + 4}} + arctan(\frac{9x}{2}) + C][/tex][Exp] Multiply: [tex]\displaystyle \frac{1}{144} [\frac{18x}{81x^2 + 4} + arctan(\frac{9x}{2}) + C][/tex][Exp] Distribute: [tex]\displaystyle \frac{1}{144}arctan(\frac{9x}{2}) + \frac{x}{8(81x^2 + 4)} + C[/tex]