Answer:
The vertex is located at (1,-4)
Step-by-step explanation:
Equation of the Quadratic Function
The vertex form of the quadratic function has the following equation:
[tex]y=a(x-h)^2+k[/tex]
Where (h, k) is the vertex of the parabola that results when plotting the function, and a is a coefficient different from zero.
We have the following quadratic equation and we need to express it in vertex form. Thus, we need to complete the squares:
[tex]y=x^2-2x-3[/tex]
Adding and subtracting 1:
[tex]y=x^2-2x+1-3-1[/tex]
The first three terms are the square of a binomial:
[tex]y=(x-1)^2-4[/tex]
Comparing to the vertex form of a quadratic equation, the vertex is at (1,-4).
The vertex is located at (1,-4)
The interest on an investment varies directly as the rate of interest. If the interest is
$40 when the interest rate is 5%, find the interest when the rate is 3.2%.
The interest when the rate of interest is 3.2% is $
(Simplify your answer. Type an integer or a decimal.)
Answer:
40.32
Step-by-step explanation:
I hopped I helped! <3
Each of these Quadratics are written in standard form choose all of the parabolas the would open upwards?
Step-by-step explanation:
When written in standard form, yout can just look at the first term
If the first term is positive it opens upwards
if the first term is negative, it opens downwards
Figures that have the same size and same shape. Their corresponding angles and sides are the same size.
Answer:
are congruent
Step-by-step explanation:
how many 6/14 feet of rope can you make out of 49/14 peices of rope?
This word problem is another way of saying
How many times can 6/14 go into 49/14
To find this out we divide
(49/14)/(6/14)
We also know that dividing by a fraction is the same as multiplying
=(49/14)(14/6)
=49/6
≈8.16
As we just want how many segments of 6/14 feet rope, we can ignore the decimals/round down getting the answer
Eight pieces of rope can be made our of 49/14 piece of rope.
A team of 13 basketball players needs to
choose two players to refill the water
cooler.
O Permutation; 39
O Combination; 60
O Combination; 78
O Permutation; 156
The selection of the basketball players is an illustration of combination
The number of ways the basketball players can be chosen is 78
How to determine the number of selectionThe given parameters are:
Number of players (n) =13
Players to select (r) = 2
The number of ways the players can be selected is calculated as:
[tex]^nC_r = \frac{n!}{(n -r)!r!}[/tex]
The equation becomes
[tex]^{13}C_2 = \frac{13!}{(13 -2)!2!}[/tex]
Evaluate the difference
[tex]^{13}C_2 = \frac{13!}{11!2!}[/tex]
Evaluate the factorials
[tex]^{13}C_2 = \frac{13 * 12 * 11!}{11! * 2}[/tex]
Evaluate the quotient
[tex]^{13}C_2 = 13 * 6[/tex]
Evaluate the product
[tex]^{13}C_2 = 78[/tex]
Hence, the number of ways the basketball players can be chosen is 78
Read more about permutation and combination at:
https://brainly.com/question/12468032
What is the rate of change for the linear relationship modeled in the table?
х Y
-1 10
1 9
3 8
5 7
A) -1/2
B) 0
C) 1/2
D) 2
Find the volume of the cone. Round your answer to the nearest tenth. A cone is shown. Its height is 9 yards and the diameter of its base is 7 yards.
Answer: 346.2yd³
Step-by-step explanation:
Volume = Area of Base x Height
Volume = πr² x 9
Volume = π(3.5)² x 9
Volume = 38.465 x 9
Volume = 346.184 ≅ 346.2yd³
A private jet can fly 1134.6 miles against a 27-mph headwind in the same amount of time it can fly 1469.4 miles with a 27-mph tailwind. Find the speed of the jet.
The speed of the jet is 1302 miles per hour.
Speed determinationSince a private jet can fly 1134.6 miles against a 27-mph headwind in the same amount of time it can fly 1469.4 miles with a 27-mph tailwind, to find the speed of the jet you must perform the following calculation:
(1469.4 - 1134.6) / 2 = X334.8 / 2 = X167.4 = X1469.4 - 167.4 = X1302 = XTherefore, the speed of the jet is 1302 miles per hour.
Learn more about speed determination in https://brainly.com/question/15191306
find the surface area of the prism. 6 cm, 9 cm, 3cm
Answer: 198cm
Step-by-step explanation:
We are given the dimensions of a rectangular prism;
3cm 9cm and 6cm
We are required to determine its surface area;
We need to know that;
Surface area of a rectangular prism is given by;
A = 2(WL+HL+WH)
Where L, W and H are length , width and height respectively;
Assuming;
Width is 3 cm
Length is 9 cm, and
Height is 6 cm
Then;
Area = 2 ( (3×9) + (6×9) + (3×6))
= 2(99)
= 198 cm²
Therefore, the area of the rectangular prism is 198 cm²
I REALLY NEED HELP MY GRADES GO IN TONIGHT AND I CAN SOLVE I NEED A REAL ANSWER I WILL CHECK BEFORE GIVING
POINTS!!!!!!!!
Answer/Step-by-step explanation:
Given:
Identify the fraction with the greater value in each pair and color it on the solution strip to solve the riddle.
Given fraction:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[tex]\frac{1}{2}\;or\;\frac{2}{5}[/tex]
[tex]\frac{2}{6} \;or\;\frac{1}{4}[/tex]
[tex]\frac{1}{3}[/tex] [tex]or\frac{1}{5}[/tex]
[tex]\frac{2}{3}\;or\frac{2}{5}[/tex]
[tex]\frac{3}{5}\;or\frac{3}{7}[/tex]
[tex]\frac{5}7\;or\frac{6}8[/tex]
[tex]\frac{5}{5}\;or\frac{6}7[/tex]
[tex]\frac{1}6\;or\frac{2}7[/tex]
[tex]\frac{5}8\;or\frac{8}9[/tex]
[tex]\frac{1}6\;or\frac{3}{10}[/tex]
[tex]\frac{3}{10}\;or\frac{4}{12}[/tex]
[tex]\frac{2}{12}\;or\frac{4}{5}[/tex]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Solve:
Finding greatest value for each;
Starting with [tex]\frac{1}{2}\;or\;\frac{2}{5}[/tex]
Turning both into decimal
1 ÷ 2 = 0.5
2 ÷ 5 = 0.4
Hence, [tex]\frac{1}{2}[/tex] is the greater value
∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞
[tex]\frac{2}{6} \;or\;\frac{1}{4}[/tex]
2 ÷ 6 = 0.33333333333
1 ÷ 4 = 0.25
Hence, [tex]\frac{2}{6}[/tex] is the greater value
∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞
[tex]\frac{1}{3}or\frac{1}{5}[/tex]
1 ÷ 3 = 0.33333333333
1 ÷ 5 = 0.20
Hence, [tex]\frac{1}{3}[/tex] is the greater value
∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞
[tex]\frac{2}{3}\;or\frac{2}{5}[/tex]
2 ÷ 3 =0.66666666666
2 ÷ 5 = 0.4
Hence, [tex]\frac{2}{3}[/tex] is the greater value
∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞
[tex]\frac{3}{5}\;or\frac{3}{7}[/tex]
3 ÷ 5 = 0.6
3 ÷ 7 = 0.42857142857
Hence, [tex]\frac{3}{5}[/tex] is the greater value
∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞
[tex]\frac{5}7\;or\frac{6}8[/tex]
5 ÷ 7 = 0.71428571428
6 ÷ 8 = 0.75
Hence, [tex]\frac{6}{8}[/tex] is the greater value
∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞
[tex]\frac{5}{5}\;or\frac{6}7[/tex]
5 ÷ 5 = 1
6 ÷ 7 = 0.85714285714
Hence, [tex]\frac{5}{5}[/tex] is the greater value
∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞
[tex]\frac{1}6\;or\frac{2}7[/tex]
1 ÷ 6 = 0.16666666666
2 ÷ 7 = 0.28571428571
Hence, [tex]\frac{2}{7}[/tex] is the greater value
∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞
[tex]\frac{5}8\;or\frac{8}9[/tex]
5 ÷ 8 =0.625
8 ÷ 9 = 0.88888888888
Hence, [tex]\frac{8}9[/tex] is the greater value
∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞
[tex]\frac{1}6\;or\frac{3}{10}[/tex]
1 ÷ 6 = 0.16666666666
3 ÷ 10 = 0.3
Hence, [tex]\frac{3}{10}[/tex] is the greater value
∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞
[tex]\frac{3}{10}\;or\frac{4}{12}[/tex]
3 ÷ 10 = 0.3
4 ÷ 12 = 0.33333333333
Hence, [tex]\frac{4}{12}[/tex] is the greater value
∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞
[tex]\frac{2}{12}\;or\frac{4}{5}[/tex]
2 ÷ 12 = 0.16666666666
4 ÷ 5 = 0.8
Hence, [tex]\frac{4}{5}[/tex] is the greater value.
∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞
~Learn with Lenvy~
2/3 x 7 2/6 =4 8/9
But how is it done?
Note: i want explanation
Do not spam ty
[tex]Hello[/tex] [tex]There![/tex]
Let's do this step-by-step explanation!
[tex]\frac{2}{3}[/tex] × [tex]7 \frac{2}{6}[/tex]
Convert mixed numbers to improper fractions: [tex]7 \frac{2}{6} =\frac{44}{6}[/tex]
[tex]=\frac{2}{3}[/tex] × [tex]\frac{44}{6}[/tex]
Cancel: [tex]\frac{44}{6} :\frac{22}{3}[/tex]
[tex]=\frac{2}{3}[/tex] × [tex]\frac{22}{3}[/tex]
Apply the fraction rule:
[tex]2[/tex] × [tex]22[/tex]
[tex]3[/tex] × [tex]3[/tex]
Mutiply the numbers: [tex]2[/tex] × [tex]22[/tex] [tex]=44[/tex]
[tex]44[/tex]
-----
[tex]3[/tex] × [tex]3[/tex]
Mutiply the numbers: [tex]3[/tex] × [tex]3=9[/tex]
[tex]=\frac{44}{9}[/tex]
Convert the fractions into mixed numbers: [tex]=\frac{44}{9} = 4\frac{8}{9}[/tex]
[tex]=4\frac{8}{9}[/tex]
Answer:
[tex]4\frac{8}{9}[/tex]
Hopefully, this helps you!!
[tex]SokkaBanned[/tex]
The base of a triangle is 6 cm greater than the height the area is 56 cm² what is the height and length of a triangle
Answer:
The base is 14 and the height is 8
Step-by-step explanation:
8 times 14 is 112. 112 divided by 2 is 56.
Drag the tiles to the boxes to form correct pairs. Not all tiles will be used.
Match the equivalent expressions.
3x + 3y + 2(2x − y)
11x + y
11x − y
4(x + y) − 3(x + y)
7x + y
x − 4x + 6y + (14x − 5y)
(5x − 3y) − x + 3x − 5y
5(x + y) + 6(x − y)
7x − 8y
Answer:
x − 4x + 6y + (14x − 5y) ⇔ 11x+y
(5x − 3y) − x + 3x − 5y ⇔ 7x-8y
5(x + y) + 6(x − y) ⇔ 11x-y
3x + 3y + 2(2x − y) ⇔ 7x+y
Step-by-step explanation:
Solve the following;
3x + 3y + 2(2x − y)
4(x + y) − 3(x + y)
x − 4x + 6y + (14x − 5y)
(5x − 3y) − x + 3x − 5y
5(x + y) + 6(x − y)
Solve:
3x + 3y + 2(2x − y)
[tex]=3x+3y+4x-2y[/tex]
[tex]\mathrm{Group\:like\:terms}[/tex]
[tex]=3x+4x+3y-2y[/tex]
[tex]\mathrm{Add\:similar\:elements:}\:3x+4x=7x[/tex]
[tex]=7x+3y-2y[/tex]
[tex]\mathrm{Add\:similar\:elements:}\:3y-2y=y[/tex]
[tex]=7x+y[/tex]
Hence, this tiles will be used.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
4(x + y) − 3(x + y)
[tex]\mathrm{Add\:similar\:elements:}\:4\left(x+y\right)-3\left(x+y\right)=\left(x+y\right)[/tex]
[tex]=x+y[/tex]
Thus, this tiles will not be used.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
x − 4x + 6y + (14x − 5y)
[tex]\mathrm{Apply\:rule}:\quad \:a+\left(b+c\right)=a+b+c[/tex]
[tex]6y+\left(14x-5y\right)=6y+14x-5y[/tex]
[tex]=x-4x+6y+14x-5y[/tex]
[tex]\mathrm{Group\:like\:terms}[/tex]
[tex]=x-4x+14x+6y-5y[/tex]
[tex]\mathrm{Add\:similar\:elements:}\:x-4x+14x=11x[/tex]
[tex]=11x+6y-5y[/tex]
[tex]\mathrm{Add\:similar\:elements:}\:6y-5y=y[/tex]
[tex]=11x+y[/tex]
Thus, this tiles will be used
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(5x − 3y) − x + 3x − 5y
[tex]\mathrm{Apply\:rule}:\quad \left(a\right)=a[/tex]
[tex]\left(5x-3y\right)=5x-3y[/tex]
[tex]=5x-3y-x+3x-5y[/tex]
[tex]\mathrm{Group\:like\:terms}[/tex]
[tex]=5x-x+3x-3y-5y[/tex]
[tex]\mathrm{Add\:similar\:elements:}\:5x-x+3x=7x[/tex]
[tex]=7x-3y-5y[/tex]
[tex]\mathrm{Add\:similar\:elements:}\:-3y-5y=-8y[/tex]
[tex]=7x-8y[/tex]
Hence, this tiles will be used
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
5(x + y) + 6(x − y)
[tex]=5x+5y+6\left(x-y\right)[/tex]
[tex]=5x+5y+6x-6y[/tex]
[tex]\mathrm{Group\:like\:terms}[/tex]
[tex]=5x+6x+5y-6y[/tex]
[tex]\mathrm{Add\:similar\:elements:}\:5x+6x=11x[/tex]
[tex]=11x+5y-6y[/tex]
[tex]\mathrm{Add\:similar\:elements:}\:5y-6y=-y[/tex]
[tex]=11x-y[/tex]
Hence, this tiles will be used
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~Learn with lenvy~
Pls help Thanks! I dont understand the question
a^-7
Step-by-step explanation:
When you divide numbers with exponents, essentially you are subtracting the exponents. So, -13 - -6 is equivalent to -7.
what means crazy plz help
Answer:
insane, fanatical, deranged, etc.
Step-by-step explanation:
Y x 6 for y=2/3 please help asap
2/3 x 6 = (2x6) / 3 = 4
What is the vertex form of the quadratic equation represented on the table?
Check the picture below, so the parabola looks more or less like so, hmmm with a vertex at (-1 , -4), so, using those values from the table
[tex]~~~~~~\textit{vertical parabola vertex form} \\\\ y=a(x- h)^2+ k\qquad \begin{cases} \stackrel{vertex}{(h,k)}\\\\ \stackrel{"a"~is~negative}{op ens~\cap}\qquad \stackrel{"a"~is~positive}{op ens~\cup} \end{cases} \\\\[-0.35em] \rule{34em}{0.25pt}[/tex]
[tex]\stackrel{vertex}{\stackrel{h}{-1}~~,~~\stackrel{k}{-4}}\qquad \implies y=a[x-(-1)]^2-4\implies y=a(x+1)^2-4 \\\\\\ \textit{we also know that} \begin{cases} x=2\\ y=14 \end{cases}\implies 14=a(2+1)^2-4\implies 18=9a \\\\\\ \cfrac{18}{9}=a\implies 2=a~\hspace{10em}\boxed{y=2(x+1)^2-4}[/tex]
what is the value of y that satisfies the equation below y/2=9
Answer:
y/2 = 9
In order to find the value of y, we must first isolate y by performing inverse operations.
Right now, y is being divided by 2, so the inverse operation of division is multiplication.
So we multiply by 2 on both sides:
y/2 = 9
*2 *2
2/2y = 18
y = 18
.52 is 10 times greater than what number
Answer:
0.052
Step-by-step explanation:
0.52 divided by 10
Answer:
Simple. It’s 0.052.
Step-by-step explanation:
0.052•10=.52
Show that ln(x^3 "-4x)" − ln(x^2 "-2x)=" ln(x + 2).
[tex] ln({x}^{3} - 4x) - ln(x {}^{2} - 2x ) [/tex]
can be written as;
[tex] ln( \frac{ {x}^{3} - 4x }{ {x}^2 - 2x } ) [/tex]
[tex] ln( \frac{x( {x}^{2 } - 4) }{x(x - 2)} ) = ln( \frac{x(x - 2)(x + 2)}{x(x - 2)} ) [/tex]
Now all you have to do, is divide the numerator and denominator by x and by (x-2)
to get,
[tex] ln( \frac{x(x - 2)(x + 2)}{x(x - 2)} ) = ln( \frac{x + 2}{1} ) = ln(x + 2) [/tex]
We proved that ln(x³-4x)-ln(x²-2) is equal to ln(x+2) :)
26
Kabita has two bags.
In the first bag there are 5 blue discs and 3 red discs.
In the second bag there are 7 blue discs and 4 red discs.
Kabita takes at random a disc from the first bag.
She then takes at random a disc from the second bag.
(a) Complete the probability tree diagram.
second
first bag
blue
7
11
blue
Complete the probability tree diagram
Answer:
I am not sure your is correct
The prices for various numbers of pounds of apples at several stores are shown in the table below. How much would 7 lbs of apples cost at PARSON'S MARKET?
5 points
Answer:
$13.23
Step-by-step explanation:
first, you divide 6 by $11.34 then you multiply 7 by $1.89 to get 13.23.
Garden canes have lengths that are normally distributed with mean 208.5cm and standard deviation 2.5cm. what is the probability of the lenght of a randomly selected cane being between 205cm and 210cm
The probability of randomly selecting a can between 205cm to 210cm is 0.8765
Data;
Mean = 208.5cmstandard deviation = 2.5cmNormal DistributionTo solve this problem, we can simply use the formula of probability and substitute the value.
[tex]p\frac{(205-108.5)}{2..5} < \frac{x - 208.5}{2.5} < \frac{210 - 205.5}{2.5}\\p(-1.4 < z < 1.8)[/tex]
Rearranging the equation and solving for the z-values;
[tex]p(z < 1.8-p < z < -1.4)[/tex]
This becomes
[tex]p = 0.9641 - 0.0876 = 0.8765[/tex]
The probability of randomly selecting a can between 205cm to 210cm is 0.8765
Learn more on normal distribution here;
https://brainly.com/question/4079902
paaaa hellllpppp po with solution po sana
To solve linear equations, we must perform inverse operations on both sides of the equal sign to cancel values out.
If something is being added to x, subtract it from both sides.If something is being subtracted from x, add it on both sides.Same with multiplication and division. If x is being divided, multiply. If x is being multiplied, divide.We perform inverse operations to combine like terms. This means to get x to one side and everything else on the other.
Solving the QuestionsQuestion 1[tex]5x+7=15[/tex]
Because 7 is being added to x, subtract it from both sides:
[tex]5x+7-7=15-7\\5x=8[/tex]
Because x is being multiplied by 5, divide both sides by 5:
[tex]\dfrac{5x}{5}=\dfrac{8}{5}\\\\x=\dfrac{8}{5}[/tex]
Therefore. [tex]x=\dfrac{8}{5}[/tex].
Question 2[tex]7x+4=5x-18[/tex]
Here, we can group all the x values on the left side of the equation. Subtract 5x from both sides:
[tex]7x+4-5x=5x-18-5x\\2x+4=-18[/tex]
To isolate x, subtract 4 from both sides:
[tex]2x+4-4=-18-4\\2x=-22[/tex]
Divide both sides by 2:
[tex]\dfrac{2x}{2}=\dfrac{-22}{2}\\\\x=-11[/tex]
Therefore, [tex]x=-11[/tex].
Two cyclists start from the same point at the same time and move in opposite directions. One cyclist is traveling at 7 mph, and the other cyclist is traveling at 9 mph. After 15 min, how far apart are the two cyclists?
Answer:
d = 4 miles
Step-by-step explanation:
combined speed = 7 + 9 = 16 mph
s = d/t
d = st
d = 16 miles/hr × 0.25 hr
d = 4 miles
Please mark me as brainliest
A computer company claims its laptop batteries averages more than 3.5 hours ofnuse per charge. A sample of 45 batteries last average of 3.72 hours. Assumes the sample and standard deviation of 0.7 hours. What are rhe correct steps to follow to figure out if you can verify the company's alpha of 0.05?
Answer:
First step : State the null and the alternative hypothesis
The null hypothesis is [tex]H_o : \mu = 3.5 \ hours[/tex]
The alternative hypothesis is [tex]H_a : \mu > 3.5 \ hours[/tex]
Second Step : Calculate the test statistics
Generally the test statistics is mathematically represented as
[tex]z = \frac{\= x - \mu }{\frac{\sigma }{\sqrt{n} } }[/tex]
=> [tex]z = \frac{3.75 - 3.5 }{\frac{0.7 }{\sqrt{45} } }[/tex]
=> [tex]z = 2.11[/tex]
Third Step : Obtain the p-value
Generally from the z-table the probability of z = 2.11 is
[tex] P(Z > 2.11) = 0.0174[/tex]
Fourth Step : Compare the p-value with the level of significance and state the decision rule and the conclusion
From the obtained value the [tex]p-value < \alpha[/tex] hence
The decision rule is
The null hypothesis is rejected
The conclusion is
There is sufficient evidence to conclude that average of the laptop batteries is more than 3.5 hours of use per charge
Step-by-step explanation:
From the question we are told that
The population mean is [tex]\mu = 3.5 \ hours[/tex]
The sample size is n = 45
The standard deviation is [tex]\sigma = 0.7 \ hours[/tex]
The sample mean is [tex]\= x = 3.75[/tex]
The level of significance is [tex]\alpha = 0.05[/tex]
First step : State the null and the alternative hypothesis
The null hypothesis is [tex]H_o : \mu = 3.5 \ hours[/tex]
The alternative hypothesis is [tex]H_a : \mu > 3.5 \ hours[/tex]
Second Step : Calculate the test statistics
Generally the test statistics is mathematically represented as
[tex]z = \frac{\= x - \mu }{\frac{\sigma }{\sqrt{n} } }[/tex]
=> [tex]z = \frac{3.75 - 3.5 }{\frac{0.7 }{\sqrt{45} } }[/tex]
=> [tex]z = 2.11[/tex]
Third Step : Obtain the p-value
Generally from the z-table the probability of z = 2.11 is
[tex] P(Z > 2.11) = 0.0174[/tex]
Fourth Step : Compare the p-value with the level of significance and state the decision rule and the conclusion
From the obtained value the [tex]p-value < \alpha[/tex] hence
The decision rule is
The null hypothesis is rejected
The conclusion is
There is sufficient evidence to conclude that average of the laptop batteries is more than 3.5 hours of use per charge
what is the area of this shape? in cm please and ty
Answer:
[tex]15cm^2[/tex]
Step-by-step explanation:
Split the shape
Find the area of smaller shapes
Add two smaller shapes' area together
Find the area of the parallelogram
A.) 3,302 ft2
B.) 3,484 ft2
C.) 3,752 ft2
D.) 4,020 ft2
I NEED this answer in 5 MINUTES!
Answer:
3484 ft²
explanation:
area of parallelogram is base * height
given:
base: 67 ftheight: 52 ftusing the formula:
base * height
67 * 52
3484 ft²
What is the rule of square numbers?
which angle is coterminal with 150°? NO LINKS!!
a. 330°
b. -150°
c. 510°
d. 500°
Now
Coterminal angle:-
2π+5π/612π+5π/617π/6510°Option C is correct