If p(x) is the total value of the production when there are x workers in a plant, then the average productivity of the workforce at the plant is A(x) p(x) * (a) Find A'(x). Why does the company want to hire more workers if A'(x) > 0? (b) Show that A'(x) > 0 if p'(x) is greater than the average productivity.

Answers

Answer 1

The average productivity of the workforce, A(x), is given by

A(x) = p(x)/x,

where p(x) is the total value of the production when there are x workers in the plant.

A'(x) is the derivative of A(x) with respect to x.

A'(x) = (p(x)/x)' = (p'(x)x - p(x))/x^2.

The company wants to hire more workers if A'(x) > 0 because it means that the average productivity of the workforce is increasing with additional workers.

A'(x) > 0 if p'(x) is greater than the average productivity, which is p(x)/x.

Therefore, A'(x) > 0 if p'(x) > p(x)/x.
To learn more about “average productivity ” refer to the: https://brainly.com/question/30870865

#SPJ11


Related Questions

Consider the decay function d(x)=850(0. 94)x. Describe the characteristics of the functions

Answers

The decay function d(x) is an exponential function with an initial value of 850, a decay factor of 0.94, and a rate of decay that increases as x increases. The function has a horizontal asymptote at y=0, and its domain is all real numbers while its range is (0, 850].

The decay function d(x) can be described by the following characteristics:

Exponential Decay: The function d(x) is an exponential function because it has a constant base (0.94) raised to a variable exponent (x).

Initial Value: The initial value of the function d(x) is 850, which represents the value of the function when x=0.

Decay Factor: The decay factor of the function d(x) is 0.94, which is less than 1. This means that as x increases, the function decreases and approaches zero, but never reaches zero.

Rate of Decay: The rate of decay of the function d(x) is determined by the value of the decay factor, which is 0.94. The closer the decay factor is to 1, the slower the rate of decay. Conversely, the closer the decay factor is to 0, the faster the rate of decay.

Asymptote: The function d(x) has a horizontal asymptote at y=0. This means that as x becomes very large, the function approaches but never touches the x-axis.

Domain and Range: The domain of the function d(x) is all real numbers, and the range is (0, 850]. This means that the function outputs a positive value less than or equal to 850, but never outputs zero.

Learn more about decay function here

brainly.com/question/28640407

#SPJ4

The solution of the differential equation y apostrophe minus y over x equals y squared is a. y equals fraction numerator 1 over denominator open parentheses c over x minus x over 2 space close parentheses end fraction b. y equals 1 plus c e to the power of x c. y equals c x minus x ln x d. y equals c over x minus x over 2 e. y equals fraction numerator 1 over denominator c x minus x ln x end fraction
The solution of the differential equation is
a. b. c. d. e.

Answers

The given differential equation is y' - (y/x) = y²Where y is a function of x.

The solution of the given differential equation is given below Option (e) y = (1/c) (x - x ln x)

y' - (y/x) = y²

We first check whether the given differential equation is a Bernoulli differential equation. It is not a Bernoulli differential equation. Hence we cannot directly solve the given differential equation.

Using the integrating factor method, we get

Integration factor, I(x) = e^(∫(1/x)dx) = e^(ln x) = x

1. Multiplying the integrating factor to the given differential equation, we get

x y' - y = x y²

This is a linear differential equation with variable coefficients.

The standard form of the linear differential equation with variable coefficients is given below:

y' + p(x) y = q(x) where p(x) = -1/x and q(x) = x y²

2. Multiplying the integrating factor, we get x y' - y = x y²

3. Multiplying the integrating factor x on both sides, we get x² y' - xy = x³ y²

4. Differentiating both sides with respect to x, we get

2xy' + x² y'' - y - 2x y' = 3x² y y'

On simplifying, we getx² y'' + 3x y' - 2y = 0

This is a homogeneous differential equation. We substitute y = ux, where u is a function of x. On substituting we getx² u'' + 2x u' = 0

5. On simplifying, we get u' = -c/x²

6. On integrating, we get u = c/x + d where c and d are arbitrary constants.

Substituting u = y/x, we get y/x = c/x + d

Hence the solution of the given differential equation is y = c - x ln x

where c = 1

The correct option is (e).Option (e) y = (1/c) (x - x ln x)

To learn more about “differential equation” refer to the https://brainly.com/question/1164377

#SPJ11

How can you show solidarity and dicipline in projecting our environment

Answers

Showing solidarity and discipline in protecting our environment requires collective effort and a willingness to change our behavior and attitudes towards the environment. Here are some ways in which we can show solidarity and discipline in protecting our environment:

Educate ourselves and others about environmental issues and their impact on our planet and communities.

Reduce, reuse, and recycle waste by properly disposing of garbage, avoiding single-use plastics, and using eco-friendly products.

Conserve resources like water and energy by taking shorter showers, turning off lights and electronics when not in use, and using public transportation or carpooling.

Plant trees, flowers, and other vegetation to improve air quality, provide shade, and prevent erosion.

Support environmental causes and organizations through volunteering, donating, and spreading awareness.

By taking these actions, we can demonstrate our solidarity and discipline in protecting our environment, and inspire others to join us in making a positive impact on the planet.

Find out more about solidarity and discipline

brainly.com/question/31006824

#SPJ4

How does the standard deviation of the sampling distribution of all possible sample means (for a fixed sample size n) from a population compare numerically to the standard deviation of the population?

Answers

The standard error of the mean is defined as the standard deviation of the sampling distribution of all potential sample means drawn from a population.

The standard error is also known as the standard deviation of the sampling distribution.

The standard deviation of the population is known as the population standard deviation.

The population standard deviation is an estimate of the amount of variation or dispersion of the values in the population.

It represents the average distance of the values from the mean of the population.

The standard deviation of the sampling distribution of all possible sample means (for a fixed sample size n) from a population is lower than the standard deviation of the population.

The standard deviation of the sampling distribution of all possible sample means is a measure of the variation of the sample means around the population mean.

The sample means are less variable than the individual observations in the population; therefore, the standard deviation of the sample means is lower than the standard deviation of the population.

In general, the standard error is given by:

$$SE = \frac{{{\sigma _p}}}{{\sqrt n }}$$

where, σp represents the population standard deviation and n represents the sample size.

The standard deviation of the sampling distribution is lower than the population standard deviation.

The standard deviation of the sampling distribution is dependent on the sample size n.

As the sample size increases, the standard deviation of the sampling distribution decreases.

Learn more about  standard error here:

https://brainly.com/question/1191244

#SPJ11

One of the earliest applications of the Poisson distribution was made by Student (1907) in studying errors made in counting yeast cells or blood corpuscles with a haemacytometer. In this study, yeast cells were killed and mixed with water and gelatin; the mixture was then spread on a glass and allowed to cool. Four different concentrations were used. Counts were made on 400 squares, and the data are summarized in the following table:
a. Estimate the parameter λ for each of the four sets of data.
b. Find an approximate 95% confidence interval for each estimate.
c. Compare observed and expected counts.

Answers

 In conclusion, the Poisson distribution was successfully applied by Student (1907) to the study of errors in counting yeast cells or blood corpuscles with a haemacytometer. It is possible to calculate an approximate 95% confidence interval for each estimated count, as well as to compare observed and expected counts.

The Poisson distribution was first applied to the study of errors made in counting yeast cells or blood corpuscles with a haemacytometer by Student (1907). The study involved the preparation of four different concentrations of a mixture of yeast cells, water, and gelatin spread on a glass. Counts were made on 400 squares and the data summarized in the following table.

An approximate 95% confidence interval for each estimate can be calculated using the Poisson distribution. For each of the four concentrations, the lower bound of the confidence interval is given by the formula x - 1.96*sqrt(x) and the upper bound is given by the formula x + 1.96*sqrt(x), where x is the observed count for that concentration.

It is also possible to compare the observed counts with the expected counts for each concentration. The expected count for each concentration is given by the formula λ = n*p, where n is the number of squares and p is the probability of an event occurring in a single square. The expected counts can be compared to the observed counts to determine whether they are in agreement with the Poisson distribution.

for such more questions on haemacytometer

https://brainly.com/question/30983609

#SPJ11

Suppose the heights of 18-year-old men are approximately normally distributed, with mean 71 inches and standard deviation 5 inches.
(a) What is the probability that an 18-year-old man selected at random is between 70 and 72 inches tall? (Round your answer to four decimal places.)


(b) If a random sample of eight 18-year-old men is selected, what is the probability that the mean height x is between 70 and 72 inches? (Round your answer to four decimal places.)


(c) Compare your answers to parts (a) and (b). Is the probability in part (b) much higher? Why would you expect this?
The probability in part (b) is much higher because the mean is larger for the x distribution.
The probability in part (b) is much higher because the standard deviation is smaller for the x distribution.
The probability in part (b) is much lower because the standard deviation is smaller for the x distribution.
The probability in part (b) is much higher because the mean is smaller for the x distribution.
The probability in part (b) is much higher because the standard deviation is larger for the x distribution.

Answers

The probability that an 18-year-old man selected at random is between 70 and 72 inches tall is approximately 0.0793 and the probability that the mean height of a sample of eight 18-year-old men is between 70 and 72 inches is approximately 0.9057 and the probability in part (b) is much higher because the standard deviation is smaller for the x distribution.

What do you mean by normally distributed data?

In statistics, a normal distribution is a probability distribution of a continuous random variable. It is also known as a Gaussian distribution, named after the mathematician Carl Friedrich Gauss. The normal distribution is a symmetric, bell-shaped curve that is defined by its mean and standard deviation.

Data that is normally distributed follows the pattern of the normal distribution curve. In a normal distribution, the majority of the data is clustered around the mean, with progressively fewer data points further away from the mean. The mean, median, and mode are all the same in a perfectly normal distribution.

Calculating the given probabilities :
(a) The probability that an 18-year-old man selected at random is between 70 and 72 inches tall can be found by standardizing the values and using the standard normal distribution table. First, we find the z-scores for 70 and 72 inches:

[tex]z-1 = (70 - 71) / 5 = -0.2[/tex]

[tex]z-2 = (72 - 71) / 5 = 0.2[/tex]

Then, we use the table to find the area between these two z-scores:

[tex]P(-0.2 < Z < 0.2) = 0.0793[/tex]

So the probability that an 18-year-old man selected at random is between 70 and 72 inches tall is approximately 0.0793.

(b) The mean height of a sample of eight 18-year-old men can be considered a random variable with a normal distribution. The mean of this distribution will still be 71 inches, but the standard deviation will be smaller, equal to the population standard deviation divided by the square root of the sample size:

[tex]\sigma_x = \sigma / \sqrt{n} = 5 / \sqrt{8} \approx 1.7678[/tex]

To find the probability that the sample mean height is between 70 and 72 inches, we standardize the values using the sample standard deviation:

[tex]z_1 = (70 - 71) / (5 / \sqrt{8}) \approx -1.7889[/tex]

[tex]z_2 = (72 - 71) / (5 / \sqrt{8}) \approx 1.7889[/tex]

Then, we use the standard normal distribution table to find the area between these two z-scores:

[tex]P(-1.7889 < Z < 1.7889) \approx 0.9057[/tex]

So the probability that the mean height of a sample of eight 18-year-old men is between 70 and 72 inches is approximately 0.9057.

(c) The probability in part (b) is much higher because the standard deviation is smaller for the x distribution. When we take a sample of eight individuals, the variability in their heights is reduced compared to the variability in the population as a whole. This reduction in variability results in a narrower distribution of sample means, with less probability in the tails and more probability around the mean. As a result, it becomes more likely that the sample mean falls within a given interval, such as between 70 and 72 inches.

To know more about normal distribution visit :

brainly.com/question/29509087

#SPJ1

What is a coterminal angle of 22 times pi over 3 question mark

Answers

[tex]\cfrac{22\pi }{3}\implies \cfrac{(3)(7)\pi +\pi }{3}\implies 7\pi +\cfrac{\pi }{3}\implies 6\pi +\pi +\cfrac{\pi }{3}[/tex]

so the angle is really 3 revolutions plus another π plus a little bit more.  Check the picture below.

Find the mean, variance, and standard deviation for each of the values of n and p when the conditions for the binomial distribution are met. Round your answers to three decimal places as needed. Part 1 out of 4 n = 295, p = 0.21

Answers

The mean, variance, and standard deviation for n = 295 and p = 0.21 by using binomial distribution are

61.95, 48.8125, and 6.988, respectively.

The binomial distribution, which is a type of probability distribution, is used to calculate the probability of a certain number of successes (or failures) in a given number of trials. The mean, variance, and standard deviation of a binomial distribution can be calculated using the following formulas:
Mean (μ) = np
Variance (σ²) = npq
Standard deviation (σ) = √(npq)
Where n is the number of trials, p is the probability of success in a single trial, and q is the probability of failure in a single trial (q = 1 - p).

Part 1 out of 4: n = 295, p = 0.21
Using the formulas above, we can calculate the mean, variance, and standard deviation for this binomial distribution.
Mean (μ) = np

= 295 × 0.21 ⇒61.95
Variance (σ²) = npq

= 295 × 0.21 × 0.79 ⇒ 48.8125
Standard deviation (σ) = √(npq)

⇒ √(48.8125) = 6.988

Therefore, the mean, variance, and standard deviation for n = 295 and p = 0.21 are 61.95, 48.8125, and 6.988, respectively.

To know more about the " mean, variance, and standard deviation": https://brainly.com/question/12402189

#SPJ11

11. Figure EFGH is a parallelogram. Find the length of Line FG.

Answers

The length οf line FG is 12 cm, If  Figure EFGH is a parallelοgram.

What is parallelοgram?

A parallelοgram is a type οf quadrilateral with twο pairs οf parallel sides. The οppοsite sides οf a parallelοgram are equal in length and parallel tο each οther.

Since EFGH is a parallelοgram, we knοw that the οppοsite sides are parallel and equal in length. Therefοre, the length οf line FG is equal tο the length οf line EH.

We can find the length οf EH by using the Pythagοrean theοrem οn right triangle EFG:

[tex]EF^2 + FG^2 = EG^2[/tex]

Since EF = 5 cm, EG = 13 cm, and angle FEG is a right angle (as οppοsite angles in a parallelοgram are equal), we can sοlve fοr FG:

[tex]FG^2 = EG^2 - EF^2[/tex]

[tex]FG^2 = 13^2 - 5^2[/tex]

[tex]FG^2 = 144[/tex]

[tex]FG = \sqrt{(144)[/tex]

[tex]FG = 12 cm[/tex]

Therefοre, the length οf line FG is 12 cm.

To learn more about parallelogram from the given link:

https://brainly.com/question/29147156

#SPJ1


In the story, 12 districts must regularly send a teen boy and girl known as "Tributes" to the Capitol district to compete in the hunger games. As the games begin, President Coriolaunus Snow addresses the contestants with a traditional phrase "May the odds be ever in your favor."
a) How many different first names could President Snow create using the letters in Coriolanus?
3906
b) How many different first names could he create, if the consonants in Coriolaúnus are kept together?
saal
06
c) How many different first names could he create using Coriolaunus, that end with an 'vowel?
d) How many different first names could he create, if he kept the consonants in alphabetical order?
e) How many different first names could he create, if he didn't repeat a letter in that first name?

Katniss Everdeen volunteered to become a "tribute" after her younger sister was selected for the hunger games. Assuming that there were 64 boys and 59 girls who were eligible to be selected that year from her district as "tributes," then:
a) how many ways could 2 youths be selected from the entire group of eligible youths?
b) how many ways could a single boy and girl be selected as "tributes" from the eligible youths?
c) Some families had to offer more than one child for the selection process. If there were 14 pairs of brother and sister groups among the eligible youths, then how many ways could a girl be selected first followed by her brother to compete in the hunger games?

Answers

a) To find the number of different first names President Snow could create using the letters in "Coriolanus", we can use the formula for permutations with repeated letters. There are 10 letters in "Coriolanus", but "o" and "i" each appear twice, so the total number of permutations is:

10! / (2! * 2!) = 45,360 / 4 = 11,340

Therefore, President Snow could create 11,340 different first names using the letters in "Coriolanus".

b) If the consonants in "Coriolanus" are kept together, we have "Crlns" as a string of consonants. This gives us 5 consonants to arrange, so the number of permutations is:

5! = 120

Therefore, President Snow could create 120 different first names using the consonants in "Coriolanus" kept together.

c) To count the number of different first names using "Coriolanus" that end with a vowel, we can consider the last letter of the name. There are 4 vowels in "Coriolanus", so there are 4 choices for the last letter. For the other letters, we can use the remaining 9 letters (excluding the last vowel) in any order. Therefore, the number of different first names that end with a vowel is:

4 * 9! = 1451520

Therefore, President Snow could create 1,451,520 different first names using "Coriolanus" that end with a vowel.

d) If the consonants in "Coriolanus" are kept in alphabetical order, then we have "aclnorsu". This gives us 8 letters to arrange, so the number of permutations is:

8! = 40,320

Therefore, President Snow could create 40,320 different first names using the consonants in "Coriolanus" in alphabetical order.

e) To find the number of different first names President Snow could create without repeating any letters, we can use the formula for permutations without repetition. There are 10 letters in "Coriolanus", so the total number of permutations is:

10! = 3,628,800

Therefore, President Snow could create 3,628,800 different first names without repeating any letters.

a) To find the number of ways to select 2 youths from the group of eligible youths, we can use the formula for combinations. We have 64 boys and 59 girls, so the total number of eligible youths is 64 + 59 = 123. The number of ways to select 2 youths is:

123C2 = (123 * 122) / 2 = 7503

Therefore, there are 7,503 ways to select 2 youths from the entire group of eligible youths.

b) To find the number of ways to select a single boy and girl as "tributes" from the eligible youths, we can use the product rule. There are 64 boys to choose from and 59 girls to choose from, so the number of ways to select one boy and one girl is:

64 * 59 = 3,776

Therefore, there are 3,776 ways to select a single boy and girl as "tributes" from the eligible youths.

c) To find the number of ways to select a girl first followed by her brother, we can use the product rule again. There are 59 girls to choose from for the first selection, and after a girl is selected, there are 63 youths left to choose from (excluding the selected girl and the 14 pairs of brother and sister groups). Therefore, the number of ways to select a girl first followed by her brother is:

59 *

What is true about angle APD?

Answers

Angle APD is opposite to angle APC. Angle APD is supplementary (adds up to 180 degrees) to angle CPB.

Describe Supplementary Angles?

In geometry, two angles are called supplementary angles if the sum of their measures is equal to 180 degrees. In other words, if two angles are placed adjacent to each other so that they share a common vertex and a common side, and the non-common sides form a straight line, then these angles are supplementary.

For example, if angle A and angle B are supplementary, then their measures are such that A + B = 180 degrees. Therefore, if angle A measures 120 degrees, then angle B measures 60 degrees.

It is important to note that supplementary angles do not have to be adjacent or even on the same line. As long as the sum of their measures equals 180 degrees, they are considered supplementary.

When two lines AB and CD intersect at point P, the angles formed are related in several ways. Specifically:

Angle APD is opposite to angle APC.

Angle APD is supplementary (adds up to 180 degrees) to angle CPB.

To know more about angle visit:

https://brainly.com/question/9058897

#SPJ1

Write an explicit rule for the recursive rule. a1=8,
an=an−1−12

Answers

Answer:

[tex]a_{n}[/tex] = 20 - 12n

Step-by-step explanation:

the explicit rule for an arithmetic sequence is

[tex]a_{n}[/tex] = a₁ + (n - 1)d

where a₁ is the first term and d the common difference

a recursive rule has the form

[tex]a_{n}[/tex] = [tex]a_{n-1}[/tex] + d

given recursive rule

[tex]a_{n}[/tex] = [tex]a_{n-1}[/tex] - 12 : a₁ = 8

then a₁ = 8 and d = - 12

explicit rule is therefore

[tex]a_{n}[/tex] = 8 - 12(n - 1) = 8 - 12n + 12 = 20 - 12n

a market sells five kinds of cups, 4 kinds of saucers, and 2 kinds of spoons. How many ways are there to buy two objects of different types? WILL GIVE BRAINLIST

Answers

Answer:

Step-by-step explanation:

To solve this problem, we need to determine the number of ways to choose two objects of different types from the given sets.

We can start by computing the number of ways to select two objects from each of the three sets, and then add these numbers together. Since we must choose two different types, we cannot choose two objects from the same set.

The number of ways to choose two cups is:

C(5,2) = 5! / (2! * (5-2)!) = 10

The number of ways to choose two saucers is:

C(4,2) = 4! / (2! * (4-2)!) = 6

The number of ways to choose two spoons is:

C(2,2) = 1

Since we must choose two different types, we need to multiply the number of ways to choose two objects from different sets. There are three sets to choose from, so we need to choose two of them as follows:

3 choices of sets * number of ways to choose two objects from each set = 3 * (10 + 6 + 1) = 51

Therefore, there are 51 ways to buy two objects of different types from the given sets of cups, saucers, and spoons.

The height off the ground, in feet, of a squirrel leaping from a tree branch is given by the function H(x) = –16x*2 + 24x + 15, where x is the number of seconds after the squirrel leaps. How many seconds after leaping does the squirrel reach its maximum height?


A.

1. 33 s


B.

0. 50 s


C.

0. 75 s


D.

1. 00 s

Answers

Answer:

  C.  0.75 s

Step-by-step explanation:

Given a squirrel's height is defined by H(x) = -16x² +24x +15, you want to know the value of x when the height is a maximum.

Vertex

The x-coordinate of the vertex of y = ax² +bx +c is x=-b/(2a). For the given function, we have a=-16 and b=24, so the x-value at the vertex is ...

  x = -b/(2a) = -24/(2(-16)) = 24/32 = 3/4

  x = 0.75

The squirrel reaches its maximum height 0.75 seconds after leaping.

Instructions: After interacting on your own with the model above press the "Reset" button. Use the Demand Slider in the "Settings" to have your demand curve match the equation {Demand: P=$6.00-0.100(Qd)}.



a. What is the total revenue when the price is $2.00? $



b. What is the total revenue when the price is $1.00? $



c. Is demand price elastic, price inelastic or unit elastic between these two prices:
(Click to select)



Instructions: Use the Demand Slider in the "Settings" to have your demand curve match the equation {Demand: P=$4.80-0.060(Qd)}.



d. What is the optimal price and quantity to maximize the total revenue? P = $
, Q =
, TR = $



e. What is the total revenue when the price is $3.00 and quantity is 30? $



f. What is the total revenue when the price is $1.80 and quantity is 50? $



g. If demand is price elastic and the market price is $3.00 what can be done to increase the total revenue?

Answers

Given the demand function P=$6.00-0.100(Qd)

a) at a price of $2.00, the quantity demanded is 40 units, thus, Total Revenue = $80

b) at a price of $1.00, the quantity demanded is 50 units, thus, Total Revenue  = $50

c) Since the price elasticity of demand is less than 1, demand is price inelastic between these two prices.

Given the demand function P=$4.80-0.060(Qd)

d)
The optimal price to maximize total revenue is $2.40 and the optimal quantity is 40 units. TR = $96

e) When the price is $3.00 and the quantity demanded is 30, TR = $90

f) When the price is $1.80 and the quantity demanded is 50, the total revenue = $90

g) If demand is price elastic and the market price is $3.00, total revenue can be increased by reducing the price.


What is a demand function?

A demand function is a mathematical equation that describes the relationship between the price of a good or service and the quantity of that good or service that consumers are willing and able to purchase at that price.

a. When the price is $2.00, the quantity demanded can be calculated by setting Qd equal to 2.00 in the demand equation:

Qd = (6.00 - 0.100Qd)

2.00 = (6.00 - 0.100Qd)

0.100Qd = 4.00

Qd = 40

Therefore, at a price of $2.00, the quantity demanded is 40 units. The total revenue can be calculated by multiplying the price by the quantity demanded:

Total Revenue = Price x Quantity Demanded = 2.00 x 40 = $80

b. When the price is $1.00, the quantity demanded can be calculated in the same way:

Qd = (6.00 - 0.100Qd)

1.00 = (6.00 - 0.100Qd)

0.100Qd = 5.00

Qd = 50

Therefore, at a price of $1.00, the quantity demanded is 50 units. The total revenue can be calculated as:

Total Revenue = Price x Quantity Demanded = 1.00 x 50 = $50

c. To determine the price elasticity of demand between these two prices, we need to compare the percentage change in quantity demanded to the percentage change in price.

At a price of $2.00, the quantity demanded is 40 units. At a price of $1.00, the quantity demanded is 50 units. The percentage change in quantity demanded can be calculated as:

% Change in Quantity Demanded = (New Quantity Demanded - Old Quantity Demanded) / Old Quantity Demanded x 100%

= (50 - 40) / 40 x 100% = 25%

The percentage change in price can be calculated as:

% Change in Price = (New Price - Old Price) / Old Price x 100%

= (1.00 - 2.00) / 2.00 x 100% = -50%

The price elasticity of demand between these two prices can be calculated as:

Price Elasticity of Demand = % Change in Quantity Demanded / % Change in Price

= 25% / -50%

= -0.5

Since the price elasticity of demand is less than 1, demand is price inelastic between these two prices. This means that a change in price will result in a proportionately smaller change in quantity demanded.


d). To find the optimal price and quantity to maximize total revenue, we need to take the derivative of the total revenue function with respect to quantity and set it equal to zero.

Total Revenue = Price x Quantity Demanded

TR = (4.80 - 0.060Qd)Qd

TR = 4.80Qd - 0.060Qd^2

Taking the derivative of TR with respect to Qd:

dTR/dQd = 4.80 - 0.120Qd

Setting dTR/dQd equal to zero:

4.80 - 0.120Qd = 0

Qd = 40

Substituting Qd = 40 into the demand equation to find the optimal price:

P = 4.80 - 0.060(40)

P = 2.40

Therefore, the optimal price to maximize total revenue is $2.40 and the optimal quantity is 40 units. The total revenue can be calculated as:

TR = P x Q = 2.40 x 40 = $96

e. When the price is $3.00 and the quantity demanded is 30, the total revenue can be calculated as:

TR = P x Q = 3.00 x 30 = $90

f. When the price is $1.80 and the quantity demanded is 50, the total revenue can be calculated as:

TR = P x Q = 1.80 x 50 = $90

g. If demand is price elastic and the market price is $3.00, total revenue can be increased by reducing the price. This is because the percentage increase in quantity demanded will be greater than the percentage decrease in price, resulting in a net increase in total revenue.


Therefore, the company could consider lowering the price from $3.00 to a price closer to the optimal price of $2.40 to increase total revenue.

Learn more about demand function on:

https://brainly.com/question/16965973

#SPJ1

suppose that a soup recipe calls for two teaspoons of salt. how many milligrams of sodium is that? ?

Answers

Two teaspoons of salt contains 7.16 grams of Na or 7160 milligrams of Na.

Given that a soup recipe calls for two teaspoons of salt. We need to find out how many milligrams of sodium is that?

1 teaspoon = 5.69 grams      1 gram = 1000 milligrams

2 teaspoons of salt = 2 * 5.69 grams = 11.38 grams of salt

11.38 grams of salt = 11.38 * 1000 milligrams = 11380 milligrams of salt

Now, we have to find out how much sodium (Na) is there in 11380 milligrams of salt. Sodium chloride is the chemical name for table salt (NaCl). So, the atomic mass of NaCl can be calculated as follows:

Na = 1Cl = 35.45

Atomic mass of NaCl = Na + Cl= 1 + 35.45= 36.45

So, 1 mole of NaCl = 36.45 grams         11380 milligrams of NaCl = 11380/1000 grams= 11.38/36.45 moles

Therefore, Moles of Na = 11.38/36.45 = 0.3121

mol Atomic mass of Na is 22.99 g/mol.

So, 1 mole of Na weighs = 0.3121 * 22.99= 7.16 grams

Therefore, 11380 milligrams of NaCl = 7.16 grams of Na. Hence, two teaspoons of salt contains 7.16 grams of Na or 7160 milligrams of Na.

To learn more about sodium refer :

https://brainly.com/question/12089709

#SPJ11

PLEASE HELPP!! i’ve been struggling with this problem for the past 30 min.. lessons about polynomials.

Answers

Answer:

39.77 -> 39 or 40, depending on rounding

Step-by-step explanation:

Since 2002-1992 is 10. T would equal 10. At that point, it would be a gesture of plugging in 10 whereever you see a "t" and solve for both

the radius of a circle is increasing at a rate of 4 cm/s. how fast is the area of the circle increasing after 10 seconds? g

Answers

Answer:

A = 1600π cm²

Step-by-step explanation:

Pre-Solving

We are given that a circle's radius increases 4 cm every second.

We want to know how large the area of the circle is after 10 seconds.

Solving

We first need to find how large the radius will be.

We know the proportion of the rate increase / time; for every 1 second, the rate increases by 4 cm.

We can write this as a proportion:

[tex]\frac{4 cm}{1 s} = \frac{x}{10s}[/tex]

We can cross multiply to get:

4 cm * 10 s = x * 1 s

Divide both sides by 1 s

(4 cm * 10 s) / (1 s) = 40cm = x

So, after 10 seconds, the radius will be 40cm.

We aren't done yet though, remember that the question wants us to find the area of the circle.

The area can be calculated using the equation A = πr², where r is the radius.

We can substitute 40 as r in the equation to get:

A = πr² = π * (40)² = 1600π cm²

Hello I need help with question 9 It says that I have to find the radius of the pipe please and thank you

Answers

Answer:

  5 cm

Step-by-step explanation:

You want to know the radius of a drain pipe that empties a cylindrical tank of height 20 cm and radius 30 cm in 2 minutes when the flow rate is 6 cm/s.

Flow rate

The rate of emptying the cylindrical tank is its volume divided by the time it takes to empty.

  V = πr²h

  V = π(30 cm)²(20 cm) = 18000π cm³

If this volume is drained in 2 minutes = 120 seconds, the flow rate is ...

  (18000π cm³)/(120 s) = 150π cm³/s

Drain area

The area of the drain pipe can be found by dividing this volumetric flow rate by the speed of the flow:

  (150π cm³/s)/(6 cm/s) = 25π cm²

Drain radius

The radius of the drain pipe is that of a circle with area 25π cm²:

  A = πr²

  25π cm² = πr²

  r² = 25 cm² . . . . . divide by π

  r = 5 cm

The radius of the drain pipe is 5 cm.

__

Additional comment

The 20 cm height of the tank is emptied in 120 seconds, so the rate of change of height is 20/120 = 1/6 cm/s. The exit pipe has a flow rate of 6 cm/s, which is 6/(1/6) = 36 times the rate of change in the tank.

The height change is inversely proportional to the area, which is proportional to the square of the radius. So the radius ratio is √36 = 6, meaning the drain must have a radius of (30 cm)/6 = 5 cm.

A video receives-16 pints and 33 points in one day. How many members voted

Answers

Answer:49

Step-by-step explanation:

Place the three sets of conditions in order. Begin with the set that gives the greatest number of triangles, and end with the set that gives the smallest number of triangles. Condition A: One side is 6 inches long, another side is 5 inches long, and the angle between them measures 50°. Condition B: One angle measures 50°, another angle measures 40°, and a third angle measures 90°. Condition C: One side is 4 inches long, another side is 9 inches long, and a third side measures 5 inches.

Answers

The order from the greatest number of triangles to the smallest is: Condition A, Condition B, Condition C.

What is triangle inequality theorem?

According to the Triangle Inequality Theorem, any two triangle sides' sums must be bigger than the length of the third side.

The triangle inequality theorem can be used to determine the order of the greatest to smallest triangle.

Condition A: Under this condition, we have two sides with lengths 5 and 6, and their angle is 50°. Using these requirements, we may create two separate triangles since 5 + 6 = 11, which is more than the third side.

Condition B: This condition results in a right triangle with a third angle that is 90° and two sharp angles that measure 40° and 50°. According to the Pythagorean theorem, the triangle's two legs must be 30 and 40 inches long, respectively, meaning that the hypotenuse must be 50 inches long. We can only create one triangle as a result.

Condition C: This condition provides us with three sides that are 4, 5, and 9 lengths long. Any two sides must have a length total larger than the third side in order for a triangle to be formed. The three sides provided, however, do not satisfy this since 4 + 5 = 9. Hence, under these circumstances, a triangle cannot be formed.

Learn more about triangle inequality theorem here:

https://brainly.com/question/1163433

#SPJ1

Key Takeaways of Cross Tab and Scatter plots (Reflecting on visual models)
- We can develop insights and knowledge about our world from manipulating and visualizing data, in particular by finding patterns
- When investigating two columns of data we can observe patterns different values move together (are correlated). We cannot know for certain the cause of the correlation.

Answers

Key takeaways of Cross Tab and Scatter plots (Reflecting on visual models):

We can develop insights and knowledge about our world by manipulating and visualizing data, in particular by finding patterns. Cross Tab is a powerful method of data analysis that helps to compare the relationship between two or more variables. The scatter plot is one of the most effective tools to visualize two-variable data.

Scatter plots: A scatter plot is a graph in which two variables are plotted against each other, with the horizontal axis representing one variable and the vertical axis representing the other. Each point in the scatter plot represents a pair of values for the two variables being plotted. When analyzing a scatter plot, we can look for patterns, relationships, or correlations between the two variables.Cross Tab: Cross tab is a popular data analysis tool that helps to determine the relationship between two or more variables. In cross-tabulation, a table is created with one variable displayed along the rows and the other variable displayed along the columns. The resulting table shows the number of occurrences of each combination of values for the two variables.

The main takeaways from cross-tabulation and scatter plots include:

Cross Tab and Scatter plots can help us to find patterns and relationships between variables.The analysis of scatter plots can help us to identify trends, clusters, and outliers.Cross Tab helps us to identify the relationship between two or more variables by displaying the data in a table format.

In conclusion, both cross-tabulation and scatter plots are effective tools for data analysis that can help to identify patterns and relationships between variables. When investigating two columns of data we can observe patterns of different values that move together (are correlated). We cannot know for certain the cause of the correlation.

To know more about the "scatter plots": https://brainly.com/question/6592115

#SPJ11

Answer your answer and show all the steps that you used to solve this problem in the space provided use the 30° - 60° - 90° triangle theorem to find the answer

Answers

The value of x is 8 inches.

To find the value of x, we can use the property of similar triangles that states that the corresponding sides of similar triangles are in proportion. Specifically, we can set up the proportion:

4/10 = x/20

We can then cross-multiply to get:

4 * 20 = 10 * x

Simplifying this equation gives us:

80 = 10x

Dividing both sides by 10, we get:

x = 8

Therefore, the value of x is 8 inches.

In summary, we used the property of similar triangles and set up a proportion involving the corresponding sides of the two triangles. By cross-multiplying and simplifying, we were able to find the value of x.

Learn more about Triangles:

https://brainly.com/question/29789999

#SPJ4

Complete Question:

Enter your answer and show all the steps that you use to solve this problem in the space provided.

On the left triangle, the shorter side is labeled 4 inches and the longer side is labeled 10 inches. On the right triangle, the shorter side is labeled x inches and the longer side is labeled 20 inches.

The two triangles above are similar. Find the value of x. Be sure to explain your steps.

Two trapezoids have areas of 432cm^2 and 48cm^2. Find the ratio of similarity

Answers

If two trapezoids have respective surface areas of  [tex]432cm^2 and 48cm^2[/tex], their similarity ratio is 3:1.

The ratio of the areas of similar figures is the square of the ratio of their corresponding side lengths.

Let's denote the ratio of similarity between the two trapezoids by "k".

The area of the first trapezoid is [tex]432 cm^2[/tex], and the area of the second trapezoid is [tex]48 cm^2[/tex].

Therefore, we can set up the equation:

(k * side length of first trapezoid)^2 / (k * side length of second trapezoid)^2 = 432/48

Simplifying the right-hand side of the equation gives:

(k * side length of first trapezoid)^2 / (k * side length of second trapezoid)^2 = 9

We can simplify the left-hand side of the equation by canceling out the "k" terms:

(side length of first trapezoid)^2 / (side length of second trapezoid)^2 = 9

Taking the square root of both sides gives:

(side length of first trapezoid) / (side length of second trapezoid) = 3

Therefore, the ratio of the corresponding side lengths of the two trapezoids is 3:1. Since the ratio of similarity is the square of the ratio of corresponding side lengths, we have:

k = (side length of first trapezoid) / (side length of second trapezoid) = 3/1 = 3

So, the ratio of similarity between the two trapezoids is 3:1.

To learn more about trapezoids visit;

https://brainly.com/question/8643562

#SPJ4

What is the length of side x in the triangle below?

Answers

Answer: x = 8.7

Step-by-step explanation:

You are given the reference angle: 60°, the hypotenuse and the leg of which to find.

X is opposite in reference to 60° and you are given the hypotenuse.

Sine works with the hypotenuse and the opposite: sin∅ = opp/hyp

sin(60°) = x/10

To figure out x, you must transpose, to make x the subject. X is being divided by 10, so to undo that you must multiply, and what you do to one side, you must do to the next to balance the equation.

10 x sin(60) = x/10 x 10

= X = sin(60) x 10

sin(60) = 0.866

X = 0.866 x 10

X = 8.66

You can round off to one decimal place or leave the answer as is.

X = 8.7 (1 d.p)

Without actually solving the given differential equation, find the minimum radius of convergence R of power series solutions about the ordinary point
x = 0. About the ordinary point x = 1.
(x2 − 9)y'' + 3xy' + y = 0

Answers

Minimum radius of convergence R of power series solutions about the ordinary point x = 1 is 1.

The minimum radius of convergence R of power series solutions about the ordinary point x = 1 of the differential equation (x²-9)y''+3xy'+y=0 can be determined as follows:Let us first write the differential equation as: y''+ (3x/(x²-9)) y' + (1/(x²-9)) y= 0Therefore, we have the following properties: p(x) = (3x/(x²-9)), q(x) = (1/(x²-9)), and x0 = 1. Since p(x) and q(x) are both rational functions, and are defined for all x except ±3, the point x0 = 1 is an ordinary point.

To obtain power series solutions about the ordinary point x = 1, we should look for solutions of the form: y = (x - 1)²Σn≥0 an(x - 1)^n, where an's are constants to be determined. This is the power series solution about x0, expanded around x0, which is x = 1.Let us now plug in this series for y, y', and y'' into the differential equation:Σn≥0 an(n+1) (x - 1)^n + 3Σn≥0 an(x - 1)^(n+1) / (x - 1)² - Σn≥0 an(x - 1)^n / (x - 1)²= 0Multiplying everything by (x - 1)² and grouping together all coefficients of the same power, we have:Σn≥0 [(n+1)(n-2) an - 3an] (x - 1)^n= 0

Comparing the coefficients of the like powers of (x - 1), we get:2a1 = 0, and [(n+1)(n-2) an - 3an] = 0 for n ≥ 2.The solution for a1 = 0 does not affect the radius of convergence. Therefore, for n ≥ 2, we obtain an = 3 / [n(n-3)] by solving the quadratic equation, n² - n - 6 = 0.Therefore, the power series solution about x0 = 1 is: y = Σn≥2 [3 / (n(n-3))] (x - 1)² (x - 1)^nThe radius of convergence of this series is given by:R = limn→∞ |an / an+1|= limn→∞ |n(n-3) / (n+1)(n-2)|= 1Therefore, the minimum radius of convergence of the power series solutions about the ordinary point x = 1 is R = 1.

Hence, the answer is: Minimum radius of convergence R of power series solutions about the ordinary point x = 1 is 1.

Learn more about Radius of convergence

brainly.com/question/28158009

#SPJ11

write an equation of the line that passes through (1 3) and has a slope of 5/4

Answers

[tex](\stackrel{x_1}{1}~,~\stackrel{y_1}{3})\hspace{10em} \stackrel{slope}{m} ~=~ \cfrac{5}{4} \\\\\\ \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{3}=\stackrel{m}{ \cfrac{5}{4}}(x-\stackrel{x_1}{1}) \\\\\\ y-3=\cfrac{5}{4}x-\cfrac{5}{4}\implies y=\cfrac{5}{4}x-\cfrac{5}{4}+3\implies {\Large \begin{array}{llll} y=\cfrac{5}{4}x+\cfrac{7}{4} \end{array}}[/tex]

During the day, 25 trains pulled into the subway station. Of those trains, 14 were full.
Find the experimental probability that the next train that pulls into the station is full

Answers

The experimental likelihood that probability the incoming train will be fully occupied is 0.56, or 56%.

What is the simplest method for resolving probability?

It's simple to calculate the likelihood of a simple event occurring by adding the probabilities together. Your overall odds to win something, for instance, are 10% + 25% = 35% if your chances of winning $10 or $20, respectively, are 10% and 25%, respectively.

In this instance, 14 of the 25 arriving trains were completely full.

The following train's likelihood of being full is determined by the proportion of full trains to all other trains.

14/25 are in favor of the upcoming train being fully loaded.

The likelihood that the following train will have every seat taken is 0.56, or 56%.

Which four rules of probability are there?

It either happens or it doesn't, according to the four significant rules of probability. The chance of an event occurring when the probability of it not occurring is put together is always 1. The same principles apply to empirical probability.

To know more about probability visit:

https://brainly.com/question/30034780

#SPJ1

suppose that a point is chosen uniformly at random from within a unit circle let (x,y) denote the coordinates of the randomly chosen point.

Answers

The probability of the chosen point uniformly at random from within a unit circle is 1/π.

Suppose that a point is chosen uniformly at random from within a unit circle.

Let (x,y) denote the coordinates of the randomly chosen point.

The coordinates of the randomly chosen point (x, y) on the unit circle can be given by:

x = cos(θ)y = sin(θ) where θ is the angle between the positive x-axis and the line segment connecting the origin to the point (x, y).

The probability density function for this situation is given by:

p(x,y) = {1/(πr^2)} for 0≤x^2 + y^2 ≤ r^2 and p(x,y) = 0 elsewhere

where r is the radius of the unit circle. For this situation, r = 1.

So, we can say that the probability of selecting a point in a unit circle is given by:

Probability (0≤x^2 + y^2 ≤ 1) = 1/(π*1^2) = 1/π.

To know more about the "unit circle": https://brainly.com/question/23989157

#SPJ11

Joseph paints ornaments for a school play. Each ornament is made up of two identical​ cylinders, as shown. All surfaces of each cylinder must be painted. How many cans of paint does he need to paint 75 ​ornaments?
PLEASE HELP ME BIG GRADE!!!!!!!!!

Answers

Number of cylindrical cans of paint does he need to paint 75 ​ornaments is 20.

What is the Surface Area of a Cylinder?

The total area that the cylinder's curved surface and round bases enclose is referred to as its surface area. The cylinder's total surface area consists of the curving surface as well as the areas of the two bases, each of which is shaped like a circle. A cylinder is a 3D solid object made up of two circular bases connected by a curving face.

Surface Area of Cylinder = 2πrh+2πr²

where , r is radius of cylinder=4.6cm

H is height of cylinder=2*6.5cm=13cm

A=2×π×4.6×13+2×π×4.6²≈508.68668cm²

Total Number of cans of paint needed to paint 75 ​ornaments=75×508.68668

/1900=20.

To know more about circle, visit:

https://brainly.com/question/29142813

#SPJ1

Other Questions
What your anderstand on this article-It is clear from affective neuroscience research that emotions are connected to our evolutionary motivation system. Feelings signal how we are reading the environment, and they are designed to mobilize and drive an adaptive behavioral response FILL IN THE BLANK. If the number of drinks consumed by a small group is 4, 4, 6, 7, and 8, the number 6 would be the _____ for that group. During the golden years of the American studio system--roughly the 1930s and 1940s--directors were often urged (or forced) to adopt the __________ technique of shooting. This method involved shooting an entire scene in long shot without cuts. This take contained all the dramatic variables for the scene. What role do the government play essay mai has a jar of quarters and dimes. she takes at least 10 coins out of the jar and has less than $2.00. write a system of inequalities that represents the number of quarters, `x`, and the number of dimes, `y`, that mai could have. The developers of a training program designed to improve manual dexterity claim that people who complete the 6-week program will increase their manual dexterity. A random sample of 12 people enrolled in the training program was selected. A measure of each person's dexterity on a scale from 1 (lowest) to 9 (highest) was recorded just before the start of and just after the completion of the 6-week program. The data are shown in the table below. Person Before Program After ProgramA 6.7 7.8 B 5.4 5.9 C 7.0 7.6 D 6.6 6.6E 6.9 7.6 F 7.2 7.7 G 5.5 6.0 H 7.1 7.0 J 7.9 7.8 I 5.9 6.4 K 8.4 8.7 L 6.5 6.5 TOTAL 81.1 85.6 Can one conclude that the mean manual dexterity for people who have completed the 6-week training program has significantly increased? Support your conclusion with appropriate statistical evidence. which molecule carries the protein code from the nucleus to the ribosome?DNARNAADP There muscles extend from the pubis and ischium anteriorly to the sacrum and coccyx posteriorly. They control the evacuation of waste materials from the digestive and urinary systems.A- muscles of the abdominal wallB- Muscles of the vertebral columnC- Muscles of the pelvic floorD- Muscles of the pharynxE- Muscles of the perineal floor replacement times for cd players are normally distributed with a mean of ten years and the variance of two. find the replacement time separating the bottom 30% to the top 70%. How do you do this I need help please describe one set of molecules and how they interact to clearly show the efficient organization of a synaptic terminal. keep it simple but not too simple. The new social model of customer communication is unidirectional and intrusive. True or False. The production function shows the relationship between the- quantity of inputs and the quantity of outputs.- quantity of total outputs and total costs.- costs of inputs and the price of the output.- quantity of the labor input needed for each unit of capital to minimize costs.- level of outputs that maximize revenue. a hurricane is defined as a large area of sustained winds greater than 119 this is the wind speed at which by using truth table, find whether the proposition (p ^ q) ^~ (p v q) is a tautology, contradiction, or contingency. new empires and states began to emerge in Africa in the... the foreign clast is a volcanic bomb. these semi-molten masses are ejected during volcanic eruptions, fly through the air, and are deposited in the surrounding area or are destroyed upon impact with the ground. given the nature of the layers in the outcrop of the gigapan image, determine when this volcanic bomb (the atypical clast) was deposited relative to the outcrop layers. select the two that apply. view available hint(s)for part g the foreign clast is a volcanic bomb. these semi-molten masses are ejected during volcanic eruptions, fly through the air, and are deposited in the surrounding area or are destroyed upon impact with the ground. given the nature of the layers in the outcrop of the gigapan image, determine when this volcanic bomb (the atypical clast) was deposited relative to the outcrop layers. select the two that apply. this is the only volcanic bomb that landed in this outcropping of sediments. the bomb landed in layers of deposited ash after they were consolidated (became solid and well-cemented together). some sediment layers were deformed ductilely by deposition of the volcanic bomb. the layers to the left and right of the clast were deposited before the clast. the uppermost layers were in their present location when the clast was deposited. in lactic acid fermentation what happens to the pyruvate coming from glycolysis? In a paragraph, choose and describe one landmark court ruling during the Civil *Rights Movement. which of the following government-indian relations peridos was characterized by the feds offering job training and employment to encourage indians to leave the reservation