If thrice a number increased by 11, the result is 35. What is the number?

Answers

Answer 1

If thrice a number increased by 11 and the result is 35, then the number is 8

Let's call the number we're trying to find "x".

According to the problem, "thrice a number increased by 11" is equal to 35. So we can write this as an equation:

3x + 11 = 35

To solve for x, we need to isolate it on one side of the equation. We can start by subtracting 11 from both sides:

3x + 11 - 11 = 35 - 11

Simplifying the left side and evaluating the right side, we get:

3x = 24

Now we can solve for x by dividing both sides by 3:

3x/3 = 24/3

x = 8

Learn more about equation here

brainly.com/question/16882938

#SPJ4


Related Questions

Two numbers have a sum of 1022. They have a difference of 292. What are the two numbers

Answers

Answer:

The answer is 657 and 365.

Step-by-step explanation:

Let the two numbers be x and y respectively

In first case,

x+y=1022

x=1022-y----------- eqn i

In second case

x-y=292

1022-y-y=292 [From eqn i]

1022-2y=292

1022-292=2y

730=2y

730/2=y

y=365

Substituting the value of y in eqn i

x=1022-y

x=1022-365

x=657

Hence two numbers are 657 and 365.

Pls mark me as brainliest if you got the answer

how many all.number of possible.diagonal that drawing in differnt verticle of nonagon​

Answers

It sounds like you want to find how many diagonals a nonagon has.

A nonagon has n = 9 sides.

The number of diagonals would be...

[tex]d = \text{number of diagonals}\\\\d = \frac{n(n-3)}{2}\\\\d = \frac{9(9-3)}{2}\\\\d = \frac{9(6)}{2}\\\\d = \frac{54}{2}\\\\d = 27\\\\[/tex]

A nonagon has 27 different diagonals.

Answer: 27

Pls read ss

PLS HELPP

Answers

The slopes are,

1) 7/6

2)7/2

3) -1

4) -2

5) 10/9

What is slope?

Calculated using the slope of a line formula, the ratio of "vertical change" to "horizontal change" between two different locations on a line is determined. The difference between the line's y and x coordinate changes is known as the slope of the line.Any two distinct places along the line can be used to determine the slope of any line.

1) The given points , [tex](x_1,y_1) =(0,1)[/tex] and [tex](x_2,y_2) = (6,8)[/tex] then,

=> slope  = [tex]\frac{y_2-y_1}{x_2-x_1}[/tex] = [tex]\frac{8-1}{6-0} = \frac{7}{6}[/tex]

2) The given points [tex](x_1,y_1) =(-1,10)[/tex] and [tex](x_2,y_2) = (-5,-4)[/tex] then,

=> Slope = [tex]\frac{-4-10}{-5+1} = \frac{-14}{-4}=\frac{7}{2}[/tex]

3)  The given points [tex](x_1,y_1) =(-10,2)[/tex] and [tex](x_2,y_2) = (-3,-5)[/tex] then,

=> slope = [tex]\frac{-5-2}{-3+10} = \frac{-7}{7}=-1[/tex]

4)  The given points [tex](x_1,y_1) =(-3,-4)[/tex] and [tex](x_2,y_2) = (-1,-8)[/tex] then,

=> slope = [tex]\frac{-8+4}{-1+3} = \frac{-4}{2}=-2[/tex]

5)The given points [tex](x_1,y_1) =(0,1)[/tex] and [tex](x_2,y_2) = (-9,-9)[/tex] then,

=> slope = [tex]\frac{-9-1}{-9+0} = \frac{-10}{-9}=\frac{10}{9}[/tex]

Hence the slopes are,

1) 7/6

2)7/2

3) -1

4) -2

5) 10/9

To learn more about slope refer the below link

https://brainly.com/question/16949303

#SPJ1

Complete the table for the given rule.

Rule: y=\dfrac{x}{2}y=

2

x



y, equals, start fraction, x, divided by, 2, end fraction

xxx yyy

111

2. 52. 52, point, 5

3. 53. 53, point, 5

Answers

The proportionate relationship is used to determine that:

Y=0.5 when x = 1.

Y Equals 1.25 when x = 2.5.

Y = Y = 1.75 when x = 3.5.

What does "proportional relationship" mean?

In a proportional connection, the output variable is determined by the input variable multiplied by a proportionality constant, as in the equation: y = kx.

where k is the proportionality constant.

The relationship in this issue is provided by:

y = x/2

Hence, y = 1/2 = 0.5 when x = 1.

Y = 2.5/2 = 1.25 when x = 2.5.

When x = 3.5:

y = 3.5/2 = 1.75

To know more about proportional relationship, click the below link

brainly.com/question/10424180

#SPJ4

You are given the following information obtained from a random sample of 6 observations. Assume the population has a normal distribution. 14 20 21 16 18 19 a. What is the point estimate of u? b. Construct an 80% confidence interval for u. Construct a 98% confidence interval for u. d. Discuss why the 80% and 98% confidence intervals are different.

Answers

A higher confidence level is associated with a wider confidence interval.

a. The point estimate of µ = (14 + 20 + 21 + 16 + 18 + 19) / 6 = 108 / 6 = 18.

b. For 80% confidence interval for µ, the confidence coefficient is 1 - α = 0.8, so α = 0.2 / 2 = 0.1. From the z-table, we can find the corresponding value of z to be 1.28. The confidence interval can be calculated as follows:

Upper Bound: µ + z*σ / √n = 18 + (1.28)(2.3) / √6 = 21.35

Lower Bound: µ - z*σ / √n = 18 - (1.28)(2.3) / √6 = 14.65

The 80% confidence interval is (14.65, 21.35). For 98% confidence interval for µ, the confidence coefficient is 1 - α = 0.98, so α = 0.01. From the z-table, we can find the corresponding value of z to be 2.33. The confidence interval can be calculated as follows:

Upper Bound: µ + z*σ / √n = 18 + (2.33)(2.3) / √6 = 23.88

Lower Bound: µ - z*σ / √n = 18 - (2.33)(2.3) / √6 = 12.12

The 98% confidence interval is (12.12, 23.88). The 80% and 98% confidence intervals are different because as we move to higher confidence levels, the z-values become larger, which in turn causes the confidence intervals to become wider. Therefore, a higher confidence level is associated with a wider confidence interval.

To learn more about confidence interval refer :

https://brainly.com/question/24131141

#SPJ11

c) assume that 25% of the defendants in the state are innocent. in a certain year 200 people put on trial. what is the expected value and variance of the number of cases in which juries got the right decision?

Answers

The expected value of cases in which juries got the right decision is 150, and the variance is 375.

1. Since 25% of defendants in the state are innocent, that means that 75% of the defendants are guilty.
2. This means that in the given year, 150 out of the 200 people put on trial will be guilty.
3. Thus, the expected value of cases in which juries got the right decision is 150.
4. The variance of the number of cases in which juries got the right decision is calculated by taking the expected value and subtracting it from the total number of people put on trial, which is 200.
5. The result of the calculation is 375, which is the variance of cases in which juries got the right decision.

See more about variance at: https://brainly.com/question/9304306

#SPJ11

this question has several parts that must be completed sequentially. if you skip a part of the question, you will not receive any points for the skipped part, and you will not be able to come back to the skipped part. tutorial exercise use the trapezoidal rule and simpson's rule to approximate the value of the definite integral for the given value of n. round your answers to four decimal places and compare the results with the exact value of the definite integral. integral 0 - 4 for x2 dx, n=4

Answers

The Simpson's rule gives a more accurate approximation of the definite integral.

The question requires you to use both the trapezoidal rule and Simpson's rule to approximate the value of a definite integral for the given value of n. Then, you should round your answers to four decimal places and compare the results with the exact value of the definite integral.Integral: 0 - 4 for x^2 dx, n=4Using Trapezoidal Rule:The Trapezoidal rule is a numerical integration method used to calculate the approximate value of a definite integral. The rule involves approximating the region under the graph of the function as a trapezoid and calculating its area. The formula for Trapezoidal Rule is given by:∫baf(x)dx≈h2[f(a)+2f(a+h)+2f(a+2h)+……+f(b)]whereh=b−anUsing n = 4, we get, h = (b-a)/n = (4-0)/4 = 1Therefore,x0 = 0, x1 = 1, x2 = 2, x3 = 3 and x4 = 4f(x0) = 0, f(x1) = 1, f(x2) = 4, f(x3) = 9, and f(x4) = 16∫4.0x^2 dx = (1/2)[f(x0) + 2f(x1) + 2f(x2) + 2f(x3) + f(x4)](1/2)[0 + 2(1) + 2(4) + 2(9) + 16] = 37

Using Simpson's Rule:Simpson's rule is a numerical integration method that is similar to the Trapezoidal Rule, but the function is approximated using quadratic approximations instead of linear approximations. The formula for Simpson's Rule is given by:∫baf(x)dx≈h3[ f(a)+4f(a+h)+2f(a+2h)+4f(a+3h)+….+f(b)]whereh=b−an, and n is even.Using n = 4, we get, h = (b-a)/n = (4-0)/4 = 1Therefore, x0 = 0, x1 = 1, x2 = 2, x3 = 3 and x4 = 4f(x0) = 0, f(x1) = 1, f(x2) = 4, f(x3) = 9, and f(x4) = 16∫4.0x^2 dx = (1/3)[f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + f(x4)](1/3)[0 + 4(1) + 2(4) + 4(9) + 16] = 20Comparing the results with the exact value of the definite integral, we have:Integral 0 - 4 for x^2 dx = ∫4.0x^2 dx = [x^3/3]4.0 - [x^3/3]0 = 64/3 ≈ 21.3333Thus, using Trapezoidal Rule, we get an approximation of 37, which has an error of 15.6667, while using Simpson's Rule, we get an approximation of 20, which has an error of 1.3333. Therefore, Simpson's rule gives a more accurate approximation of the definite integral.

Learn more about Approximation

brainly.com/question/30707441

#SPJ11

A $2,000 investment was made 16 years ago into an account that earned quarterly
compounded interest. If the investment is currently worth $6,883.55, what is the
annual rate of interest?

Answers

Answer:

We can use the formula for compound interest to solve the problem:

A = P(1 + r/n)^(nt)

where A is the final amount, P is the principal, r is the annual interest rate, n is the number of times interest is compounded per year, and t is the number of years.

In this case, we know that P = $2,000, A = $6,883.55, n = 4 (quarterly compounding), and t = 16. We can solve for r by rearranging the formula as follows:

r = n[(A/P)^(1/nt) - 1]

Substituting the values, we get:

r = 4[(6,883.55/2,000)^(1/(4*16)) - 1] = 0.0522 or 5.22%

Therefore, the annual interest rate is approximately 5.22%

(1 point) Suppose f(x,y) = xy(1 - 4x - 2y). f(x,y) has 4 critical points. List them in increasing lexographic order. By that we mean that (x,y) comes before (z, w) if x

Answers

Increasing lexicographic order: (0, 0), (0, 1/2), (1/4, 0), (1/4, 1/2)).Thus, the increasing lexicographic order of the critical points of the function f(x,y) = xy(1 - 4x - 2y) are (0, 0), (0, 1/2), (1/4, 0), and (1/4, 1/2).

lexicographic order: (0, 0), (0, 1/2), (1/4, 0), (1/4, 1/2)).Thus, the increasing lexicographic order of the critical points of the function f(x,y) = xy(1 - 4x - 2y) are (0, 0), (0, 1/2), (1/4, 0), and (1/4, 1/2).

Suppose that f(x,y) = xy(1 - 4x - 2y). f(x,y) has 4 critical points.

Let's discuss what are critical points and how we can determine them,A critical point is a point on the graph where the derivative changes its sign.

In other words, the derivative either changes from negative to positive or from positive to negative. A critical point is also known as a stationary point or a turning point

To determine the critical points, we need to find the derivative of the given function and set it equal to zero.The given function is[tex]f(x,y) = xy(1 - 4x - 2y).[/tex]

Let's find the partial derivative of f with respect to [tex]x:f_x(x,y) = y(1 - 4x - 2y) - 4xy = (1-2y)(1-4x)y.[/tex] (1)

Now, find the partial derivative of f with respect to y:f_y(x,y) = x(1 - 4x - 2y) - 2xy = (1-2x)(1-2y)x. (2)

To find the critical points, we need to set both partial derivatives (1) and (2) equal to zero.

(1-2y)(1-4x) = 0 and (1-2x)(1-2y) = 0.

Solving both equations separately, we have the following critical points:(1/4, 1/2), (1/4, 0), (0, 1/2), and (0, 0).

for such more questions on lexicographic order

https://brainly.com/question/22852607

#SPJ11

Mary runs 600m every day.
Work out how far Mary runs in one week.
Give your answer in kilometres.

Answers

Answer:

Mary runs 600 meters per day, so in one week, she runs:

600 meters/day x 7 days/week = 4200 meters/week

To convert meters to kilometers, we need to divide by 1000:

4200 meters/week ÷ 1000 meters/kilometer = 4.2 kilometers/week

Therefore, Mary runs 4.2 kilometers in one week.

Answer: 4.2 km per week

Step-by-step explanation:

Given that sec n - tan n = ¼ , find sec n + tan n

Answers

Given, [tex]$$(\sec n - \tan n) = \frac{1}{4}[/tex], so, using Trigonometry we can obtain [tex]$$\sec n + \tan n = 0$$[/tex].

Trigonometry is a branch of mathematics that deals with the study of relationships between the sides and angles of triangles. It involves the study of trigonometric functions such as sine, cosine, and tangent, and their applications to various fields such as engineering, physics, and navigation. Trigonometry helps in solving problems related to triangles, circles, and periodic phenomena such as waves and oscillations.

To find sec n + tan n using the given equation, we can use the following identity:

[tex]$$\sec^2 n - \tan^2 n = 1$$[/tex]

Multiplying both sides of the given equation by sec n + tan n, we get:

[tex]$$(\sec n - \tan n)(\sec n + \tan n) = \frac{1}{4}(\sec n + \tan n)$$[/tex]

Using the identity above, we can simplify the left-hand side of the equation as:

[tex]$$\sec^2 n - \tan^2 n = 1$$[/tex]

Therefore, we can substitute 1 for [tex]sec^2 n - tan^2[/tex] n in the equation above to get:

[tex]$$(\sec n - \tan n)(\sec n + \tan n) = \frac{1}{4}(\sec n + \tan n)$$[/tex]

[tex]$$1(\sec n + \tan n) = \frac{1}{4}(\sec n + \tan n)$$[/tex]

Simplifying further, we get:

[tex]\frac{3}{4} * $$(\sec n + \tan n) = 0[/tex]

Therefore, we can solve for sec n + tan n as:

[tex]$$\sec n + \tan n = \frac{0}{\frac{3}{4}}$$[/tex]

[tex]$$\sec n + \tan n = 0$$[/tex]

Find out more about Trigonometry

brainly.com/question/20197752

#SPJ4

A triangle has an area of 42 cm. The height of the triangle is 14 centimeters. What is the length of the base of the triangle?

Answers

The answer is going to be 3

Four friends all give each other presents.
The total cost of the presents is £80.52
Work out the mean cost of a present in pounds (£).

Answers

To work out the mean cost of a present in pounds (£), we need to divide the total cost of the presents (£80.52) by the number of presents (4).

The calculation will look like this:

£80.52 ÷ 4 = £20.13

Therefore, the mean cost of a present in pounds (£) is £20.13.

Write the following series in sigma notation. 2 + 12 + 22 + 32 + 42

Answers

The given series in the sigma notation can be written as [tex]\sum_{n = 1} ^ 5 10n - 8[/tex].

What are arithmetic series?

An arithmetic series is a set of integers where each term is made up of the common difference, a fixed amount, and the sum of the terms before it. In other words, the terms of the series may be represented as follows if the first term of an arithmetic series is a and the common difference is d:

a, a + d, a + 2d, a + 3d, ...

The given series is 2 + 12 + 22 + 32 + 42.

The total number of terms are 5.

The first term is 2, and the common difference is:

d = 12 - 2 = 10

Now, using the nth term of sequence we have:

an = 2 + (n - 1) 10

= 10n - 8

= [tex]\sum_{n = 1} ^ 5 10n - 8[/tex]

Hence, the given series in the sigma notation can be written as [tex]\sum_{n = 1} ^ 5 10n - 8[/tex].

Learn more about arithmetic sequence here:

https://brainly.com/question/10396151

#SPJ1

11. twenty batteries will be put on the display. the types of batteries are: aaa, aa, c, d, and 9-volt. a. how many ways can we choose the twenty batteries? b. how many ways can we choose the twenty batteries but be sure that at least four batteries are 9-volt batteries?

Answers

a.

There are 15,504 ways to choose 20 batteries from the given types.

b.

there are 18,564 ways to choose 20 batteries such that at least four of them are 9-volt batteries.

How do we calculate?

To choose 20 batteries from the given 5 types (aaa, aa, c, d, and 9-volt), we can use the combination formula and is given by:

nCr = n! / (r! * (n-r)!)

5C20 = 5! / (20! * (5-20)!) = 15,504

there are 15,504 ways to choose 20 batteries from the given types.

b. To choose 20 batteries such that at least four of them are 9-volt batteries, we employ the method:

First, we choose four 9-volt batteries out of the total number of 9-volt batteries, which is 1.

we then need to choose the remaining 16 batteries from the remaining 4 types (aaa, aa, c, and d), while making sure that we don't choose any 9-volt batteries.

Applying the combination formula, with n = 4 and r = 16:

4C16 = 4! / (16! * (4-16)!) = 18,564

Therefore, the total number of ways to choose 20 batteries such that at least four of them are 9-volt batteries is:

1 * 18,564 = 18,564

Learn more about combination formula at:

https://brainly.com/question/11732255

#SPJ1

A quadratic equation in form ax2 + bx + c = 0 cannot have:

Answers

One Imaginary solution is not possible for a quadratic equation of the form ax² + bx + c = 0.

By replacing the factorization method, the quadratic formula aids in evaluating the quadratic equations' solutions.

A quadratic equation has the general form ax² + bx + c = 0, where a, b, and c are real numbers, sometimes known as "numeric coefficient".

We can forecast the nature of the roots by determining the discriminant's value.

Three potential outcomes, each with a different impact

If b² - 4ac > 0, two separate roots that are real.

If b² - 4ac = 0, two real roots have magnitudes that are equal.

If b² - 4ac 0, there are no real roots and just imaginary ones.

Thus, the quadratic equation ax² + b x + c = 0 cannot have a single imaginary solution.

To know more about roots of quadratic equation, visit,

https://brainly.com/question/25841119

#SPJ4

suppose that two people standing 2 miles apart both see the burst from a fireworks display. after a period of time, the first person standing at point a hears the burst. one second later, the second person standing at point b hears the burst. if the person at point b is due west of the person at point a and if the display is known to occur due north of the person at point a , where did the fireworks display occur?

Answers

The fireworks display occurred due north of the person at point A. This can be determined by calculating the direction and speed of sound. Assuming the speed of sound is approximately 343 meters per second, the fireworks display must have occurred approximately 0.58 seconds away from point A, which is approximately 343 meters due north of point A. This means that the fireworks display occurred somewhere between the two points.


To double-check the calculations, we can look at the two points and the direction in which the sound traveled. Point A is due north of the fireworks display, and point B is due west. This means that the sound traveled both north and west, which is consistent with the calculations.


Therefore, we can conclude that the fireworks display occurred due north of point A.

for such more questions on approximate values

https://brainly.com/question/201331

#SPJ11

Can anyone please help with this math problem? Thanks!

Answers

Answer: Yes Sofia will have enough money

=======================================================

Explanation:

Refer to the drawing below. I've split the hexagon into two pieces. The bottom is a rectangle and the top is a trapezoid.

The area of the rectangle is 16*7 = 112 square meters.

The trapezoid has 16 as one of the parallel sides. The other side is x meters. We'll use the perimeter 54 to determine what x must be

sum of the exterior sides = perimeter

6+7+16+7+6+x = 54

42+x = 54

x = 54-42

x = 12

The top most side is 12 meters. This is the missing side of the trapezoid. The hexagon has a height of 12.66 meters, so the trapezoid's height must be 12.66-7 = 5.66 meters. Refer to the blue segment I marked in the drawing below.

area of the trapezoid = 0.5*height*(base1+base2)

area = 0.5*5.66*(16+12)

area = 79.24 square meters

----------------

Recap so far

area of the rectangle at the bottom = 112 square metersarea of the trapezoid up top = 79.24 square meters

The total area of the entire hexagon is therefore 112+79.24 = 191.24 square meters.

Let's convert that to square decimeters.

Recall that 1 decimeter = 10 centimeters

Multiply both sides by 10

1 decimeter = 10 centimeters

10*(1 decimeter) = 10*(10 centimeters)

10 decimeters = 100 centimeters

10 decimeters = 1 meter

Then,

[tex]191.24 \text{ sq m}= 191.24 \text{ sq m} * \frac{10 \text{ dm}}{1 \text{ m}} * \frac{10 \text{ dm}}{1 \text{ m}}\\\\= \frac{191.24*10*10}{1*1} \text{ sq dm}\\\\= 19124 \text{ sq dm}\\\\[/tex]

The entire lawn is 19124 square decimeters.

----------------

We have one final block of calculations to determine the total price.

x = number of rolls

1 roll covers 90 square decimeters

x rolls cover 90x square decimeters

90x = 19124

x = 19124/90

x = 212.489 approximately

Round up to the nearest integer to get x = 213. It doesn't matter that 212.489 is closer to 212. We round up to clear the hurdle. It means we'll have leftover grass that isn't used (perhaps it could be handy to have some back up grass just in case mistakes are made, and some patches need to be redone).

In short, Sofia needs 213 rolls.

1 roll costs $4.50

213 rolls will cost 213*4.50 = 958.50 dollars.

This is under the $1000 threshold (with 1000-958.50 = 41.50 dollars to spare).

Sofia will have enough money to pay for all of the grass.

Each angle of a regular polygon is 1680. How
many sides has it? What is the name of this
polygon?

Answers

Answer: 2 solutions

Step-by-step explanation:

To find the angle of a regular polygon, use the formula 180(n-2)/n (where n is the amount of sides.)

Setting them equal, we get (180n-360)/n = 1680.

Multiplying by n on both sides, we get 180n-360 = 1680n.

Solving, we get 1500n = 360.

n = 0.24, which means it is not a shape, as you cannot have a shape with 0.24 sides.

The other way to look at it is to take full revolutions of 360 away from each angle, giving us 240 (the smallest remainder without it going negative). However, all the angles would be concave. If all the angles are concave, then it might connect backwards.

Subtracting 240 from 360 (to get the "exterior" angles, we get 120. Plugging it in to our equation 180(n-2)/n and solving, we get 180n-360 = 120n, and solving gives us 60n = 360, or n=6.

Since the amount of sides came together cleanly, we can classify this polygon as a normal hexagon, which has 6 sides.

Function g is a transformation of the parent function f(x) = x². The graph of g is a
translation right 2 units and up 3 units of the graph of f. Write the equation for g in
the form y = ax² + bx+c.

Answers

Answer:

g(x) = x² - 4x + 7

What is the volume of a rectangular prism that has a width of 10 cm, height of 3 cm and a depth of 7 cm

Answers

the volume of the rectangular prism with a width of 10 cm, height of 3 cm, and a depth of 7 cm is 210 cubic cm.

The volume of a rectangular prism is calculated by multiplying its length, width, and height. In this case, the width is 10 cm, the height is 3 cm, and the depth is 7 cm. Therefore, the volume of the rectangular prism can be calculated as follows:

Volume = Length x Width x Height

Since the length of the rectangular prism is not given, we cannot calculate the exact volume. However, we can provide a formula that can be used to calculate the volume of any rectangular prism with the given dimensions.

Formula for the volume of a rectangular prism:

Volume = Width x Height x Depth

Substituting the given values, we get:

Volume = 10 cm x 3 cm x 7 cm

Volume = 210 cubic cm

Therefore, the volume of the rectangular prism with a width of 10 cm, height of 3 cm, and a depth of 7 cm is 210 cubic cm.

It is important to note that the unit of measurement used for the dimensions should be the same for all three dimensions in order to obtain the correct volume. In this case, the unit of measurement used is centimeters (cm), and the volume is expressed in cubic centimeters (cm³).

To know more about  rectangular prism  click here:

brainly.com/question/21308574

#SPJ4

Can someone help me please? I'm literally dying, I don't understand how to graph this because the x-axis has the numbers this way?? Help omg

Answers

This inequality will intersect x axis at -2 and y axis at 100.

Inequalities Definition

An inequality in the algebra is called mathematical statement that employs the inequality symbol to represent how two expressions relate to one another. The data on each side of an inequality symbol are nonequal. Relation  between two algebraic expressions that are represented by the inequality symbols are known as literal inequalities.

"A limk is referred an inequality if two real numbers  are connected by the symbols ">," "," "," or "."

Example: 3≤x<8 ( x is greater than or equal to 3 and less than 8)

Given Inequality

y<50x+100

For x=0;

y<100

For y=0;

x>-2

The graph of the inequality is attached below:

To know more about algebra, visit;

https://brainly.com/question/24875240

#SPJ1

Assume that X is normally distributed with a mean of 7 and a standard deviation of 4. Determine the value for x that solves each of the following equations. (a) P(X>x) 0.5 (b) P(X>x) 0.95 (c) P(x< X<9)= 0.2 (d) P(3< X

Answers

For (a), the value for x is 11, as P(X>x) = 0.5 when the mean is 7 and the standard deviation is 4. This can be found using the standard normal table.

For (b), the value for x is 19, as P(X>x) = 0.95 when the mean is 7 and the standard deviation is 4. This can also be found using the standard normal table.

For (c), the value for x is 9, as P(x< X<9) = 0.2 when the mean is 7 and the standard deviation is 4. This is found by subtracting the z-scores of x and 9 from each other, and then finding the area of the z-score between those two numbers using the standard normal table.

For (d), the value for x is 4, as P(3< X) = 0.2 when the mean is 7 and the standard deviation is 4. This is found by subtracting the z-score of 3 from the mean and then finding the area of the z-score to the left of that number using the standard normal table.

for such more questions on standard deviation

https://brainly.com/question/24298037

#SPJ11

5.4 ADDING A MULTIPLE OF THE ith ROW TO THE jth row. Example 6: Create a 5 by 5 matrix, E by typing: Type: Ε=[11 2-134:10-1-2-1; 8 3 2 11:10-2-3-2:1112-1]. Find det(E) by typing: Type DE =det(E)

Answers

The `det(E2) of the given matrix is equal to 366`.

Given a 5 by 5 matrix E= `[11 2 -1 -3 4;10 -1 -2 -1 -2;-1 2 3 2 1;1 1 1 -1 -1;2 -1 -2 1 1]`.

To find `det(E)`, we can use the following steps.

Step 1: Create a 5 by 5 matrix E1 by adding a multiple of the ith row to the jth row, given i = 3 and j = 5.

We need to add -1/3 times the 3rd row to the 5th row. It can be done by the following operation.`E1 = E` (start with the original matrix) `=> E1(5,:) = E(5,:) - E(3,:) / 3` (subtract the 3rd row of E divided by 3 from the 5th row of E)

This results in the matrix `E1 = [11 2 -1 -3 4;10 -1 -2 -1 -2;-1 2 3 2 1;1 1 1 -1 -1;1/3 -7/3 -7/3 7/3 4/3]

`Step 2: Create a 5 by 5 matrix E2 by adding a multiple of the ith row to the jth row, given i = 2 and j = 5.We need to add -20 times the 2nd row to the 5th row.

It can be done by the following operation.`E2 = E1` (start with the matrix from Step 1) `=> E2(5,:) = E1(5,:) - 20 * E1(2,:)` (subtract 20 times the 2nd row of E1 from the 5th row of E1)

This results in the matrix `E2 = [11 2 -1 -3 4;10 -1 -2 -1 -2;-1 2 3 2 1;1 1 1 -1 -1;0 -13 33 -13 44]

`Step 3: Find det(E2) by using the cofactor expansion along the 5th column.`det(E2) = 0 - (-13) * A1 + 33 * A2 - (-13) * A3 + 44 * A4 - 0 * A5`where A1, A2, A3, A4, and A5 are the 2 by 2 determinants of the submatrices obtained by deleting the 5th row and the ith column, for i = 1, 2, 3, 4, and 5. We can use the following notation.

A1 = det([11 -1 -3 4;10 -2 -1 -2;-1 3 2 1;]) = 324A2 = det([11 2 -3 4;10 -1 -1 -2;-1 2 2 1;]) = -54A3 = det([11 2 -1 4;10 -1 -2 -2;-1 2 3 1;]) = -142A4 = det([11 2 -1 -3;10 -1 -2 -1;-1 2 3 2;]) = 50A5 = det([11 2 -1 -3;10 -1 -2 -1;-1 2 3 2;]) = 366.

Therefore `det(E2) = 0 - (-13) * 324 + 33 * (-54) - (-13) * (-142) + 44 * 50 - 0 * 50 = 366`.

for such more questions on determinant

https://brainly.com/question/19799535

#SPJ11

janelle fills two buckets with water the blue bucket holds 5 quarter of water which bucket holds more water how many cups more does it hold 1 quart= 2pints 1 pint = 2 cups

Answers

the blue bucket holds 5 x 4 = 20 cups of water.

what is a probability?

In mathematics, probability is a measure of the likelihood or chance of an event occurring. It is represented as a number between 0 and 1, where 0 means the event is impossible and 1 means the event is certain.

Since 1 quart of water is equivalent to 2 pints of water and 1 pint of water is equivalent to 2 cups of water, then 1 quart of water is equivalent to 4 cups of water (2 pints x 2 cups per pint = 4 cups).

To determine which bucket holds more water, we need to know the amount of water in the other bucket. Without that information, we cannot compare the two buckets.

Assuming that Janelle filled the other bucket with water as well, we would need to know how many cups of water it holds in order to compare the two buckets.

Therefore, the blue bucket holds 5 x 4 = 20 cups of water.

To learn more about probability from the given link:

https://brainly.com/question/30034780

#SPJ1

A photograph of sides 35cm by 22cm is mounted onto a frame of external dimension 45cm by 30cm.Find the area of the border surrounding the photograph

Answers

Solution:

Dimension of photograph is 35cm and 22cm.

And external dimension of photo frame is 45cm and 30cm

So, the area of the border surrounding the photograph=Area of photo frame−Area of photo.

So, The area of the border surrounding the photograph [tex]=45\times30-35\times22[/tex]

[tex]=1350-770=580cm^2[/tex]

Can you do Step by step because I need help

Answers

Answer:

4[tex]\sqrt{2\\}[/tex]

Step-by-step explanation:

This is a 45 45 90 Triangle meaning that x would be 4 squareroot 2

so the formula goes lets say 4= a and the other side is b

a=b and x=a[tex]\sqrt{2[/tex]

PLEASE HELP WITH NUMBERS 9 and 10!!!
Pythagorean theorem (triangles)

Answers

Answer:

9. 6.32

10. 4.12

Step-by-step explanation:

9. c^2 = 2^2 + 6^2 = 4 + 36 = 40

c = √40 = 6.32

10. c^2 = 1^2 + 4^2 = 17

c = √17 = 4.12

brad is in a big dorm with 180 other students. let x be the number of other students who have the same birthday as brad. using poisson approximation, approximate the probability that (a) there is at least one student with same birthday as brad? (b) exactly one student with same birthday as brad? (c) at least two students? compare this with the exact probability. you may assume that the birthday of each of the other students is equally likely to be any one of the 365 days (no students born on leap years) and independent of each other

Answers

Using the Poisson Approximation the probability are:

a)  0.6321

b)  0.3679

c) 0.2642

The Poisson distribution is utilized to compute the likelihood of a particular amount of occurrences happening over a set period. The Poisson approximation will be used to answer the given question, and it is a form of a probability distribution that can be used to approximate the probability of particular events that occur infrequently, and it is suitable for both continuous and discrete variables.

a) The probability of having at least one student with the same birthday as Brad using the Poisson Approximation.

Let the number of other students with the same birthday as Brad be represented by x. Here, x is a discrete variable with a Poisson distribution that follows a Poisson distribution with an average of λ, which is equal to 1:

λ = average number of students having the same birthday as Brad = 1.

Using the Poisson distribution formula, the probability of having at least one student with the same birthday as Brad is given by:

P(X >= 1) = 1 - P(X = 0)

= 1 - e ^ (-λ)P(X = 0)

= (e^(-λ))(λ^0) / 0!

= e^(-λ)

= e^(-1)

= 0.3679

Therefore, the probability of having at least one student with the same birthday as Brad is:

P(X >= 1) = 1 - P(X = 0)

= 1 - 0.3679

= 0.6321

b) The probability of having exactly one student with the same birthday as Brad using Poisson Approximation

P(X = 1) = (e^(-λ))(λ^1) / 1!

= e^(-1)(1) / 1!

= e^(-1)

= 0.3679

Therefore, the probability of having exactly one student with the same birthday as Brad is:

P(X = 1)

= e^(-1)

= 0.3679

c) The probability of having at least two students with the same birthday as Brad using Poisson Approximation

P(X >= 2) = 1 - P(X < 2)

= 1 - [P(X = 0) + P(X = 1)]

= 1 - [e^(-λ)(λ^0) / 0! + e^(-λ)(λ^1) / 1!]

= 1 - [e^(-1) + e^(-1)(1) / 1!]

= 1 - [e^(-1) + e^(-1)]

= 1 - 2e^(-1)

= 0.2642

Compare the Poisson Approximation (a) Probability with the exact probability- At least one student with the same birthday as Brad

Exact probability: 1 - (364/365)^180 = 0.4406

Poisson Approximation Probability: 0.6321

The exact probability is 0.4406, which is less than the Poisson approximation probability, which is 0.6321.

This result indicates that the Poisson approximation formula overestimates the likelihood of having at least one student with the same birthday as Brad.

(b) Exactly one student with the same birthday as Brad

Exact probability: (364/365)^179(1/365) = 0.3775

Poisson Approximation Probability: 0.3679

The exact probability is 0.3775, which is quite similar to the Poisson approximation probability, which is 0.3679.

This result indicates that the Poisson approximation formula provides a reasonably precise estimate of the likelihood of having exactly one student with the same birthday as Brad.

(c) At least two students with the same birthday as Brad

Exact probability: 1 - [1 + 364/365 + ... + (364!/347!)/365^34] = 0.1827

Poisson Approximation Probability: 0.2642

The exact probability is 0.1827, which is less than the Poisson approximation probability, which is 0.2642.

This result indicates that the Poisson approximation formula overestimates the likelihood of having at least two students with the same birthday as Brad.

To know more about the "Poisson approximation": https://brainly.com/question/9123296

#SPJ11

In the morning 134 books were checked out from the library.in the afternoon 254 books were checked out and 188 books were checked out in the evening.how many books were checked out in the library that day?

Answers

Answer:

576 books.

Step-by-step explanation:

134+254+188=576 books in total.

Hopefully this helps!

Other Questions
how might the cities of latin america deal with the increasing demands placed on them by their expanding populations? Mercury's radius is approximately 1516 miles which equation can you use to calculate its approximate volume What impact did the Rodney king arrest have on society in adult plants, cell division is concentrated in regions called An 70 N crate slides with constant speed a distance of 3.8 m downward along a rough slope that makes an angle of 45 with the horizontal. The coefficient of kinetic friction between the crate and the supporting material is 0.05. The work done by the force of gravity is: . which risk management approach requires a distributed approach with business units working with the it organization? a. octave b. cramm c. nist sp800-30 d. iso 27005 e. none of the above Calculate the annual growth rate of nominal GDP in the following examples: Nominal GDP in 1930: $97 billion. Nominal GDP in 1931: $84 billion. Nominal GDP in 1931: $84 billion. Nominal GDP in 1932: $68 billion. Nominal GDP in 2000: $9,744 billion. Nominal GDP in 2001: $10,151 billion. Let X >0 denote a random variable with p.d.f. fx(2) and c.d.f. Fx (I). Assume Fx() is monotone increasing, and let Y = FX(X). That is, Y is a random variable that takes the value Fx (1) when X = r. Find fy(y). Mark the correct answer (a) fy(y) = 1,0 Refer to the following selected financial information from Texas Electronics Compute the company's working capital for Year 2. Cash Short-term investments Accounts receivable, net Merchandise inventory Prepaid expenses Plant assets Accounts payable Net sales Cost of goods sold Year 2 Year 1 $ 37,500 $ 36,850 90,000 90,000 85,500 86,250 121,000 117,000 12,100 13,500 388,000 392,000 113,400 111,750 711,000 706,000 390,090 385,500. a) $232,700. b) $220,600. c) $147,200. d)$111,700. e) $142,700. Why did Truman decide to use the atomic bomb?Responses:He wanted to keep the Germans from entering the war in the Pacific.He wanted to quickly end the war in the Pacific without invading Japan.He wanted to test the effects of an atomic bomb on a large city.He wanted to show off the United States' new super weapon. Assume that the readings at freezing on a batch of thermometers are normally distributed with a mean of 0C and a standard deviation of 1.00C. A single thermometer is randomly selected and tested. Find the probability of obtaining a reading less than -2.74C. Round your answer to 4 decimal places Use substitution to solve -4x + y = 3, 5x - 2y = -9 Please order the following fractions from least to greatest: 5/6, 2/3, 5/9, 5/12, 6/5 The volume of two similar figures are given. The surface area of the larger figure is given. Find the surface area of the smaller figure.V=4000m^3V=6912m^3S.A.=2304m^3 when paying simple interest, you are paying interest on____. question 12 options: a. only the principal amount invested b. on interest c. interest accrued at the beginning of the period d. only reinvested interest Maggie crochets squares to make a blanket. She has 6 squares made. She then makes 6 squares each hour for 3 hours. Determine which of the following represent the linear relationship described. you plan to implement a new security device on your network. which of the following policies outlines the process you should follow before implementing that device? arab americans, on average, have attained higher levels of education and income than the general population. for this reason, some have labeled the ethnic group a(n) minority. Refer to the exhibit. What protocol can be configured on gateway routers R1 and R2 that will allow traffic from the internal LAN to be load balanced across the two gateways to the Internet? An object is subjected to a friction force with magnitude 4.50 N, which acts against the object's velocity. What is the work (in J) needed to move the object at constant speed for the following routes? (a) the purple path o to A followed by a return purple path to O ________ J. b) the purple path O to C followed by a return blue path to O ________ J (c) the bluc path O to C followed by a retum blue path to O ________ J.