If the height of the triangle is increased by a factor of 4 , then (b) The area will increase by a factor of 4 .
The Area of a triangle is : Area = (1/2)×b×h,
Where base of triangle = b and height of triangle = h ;
In this case, the base of triangle is = 20m and
the height of triangle is = 10m,
So the area of the triangle is ⇒ A = (1/2)×20m×10m = 100m² ;
If the height of the triangle is increased by a factor of 4, the new height will be 4 times the original height,
Which is ⇒ h' = 4×h = 4×10m = 40m ;
The base of triangle remains that is = 20m.
So, the new area of the triangle is : A' = (1/2)×20m×40m = 400m² ;
On Comparing New area(A') to the Original area(A),
We get ; A'/A = 400/100 = 4 ;
Therefore, the area of the triangle has increased by a factor of 4.
Learn more about Triangle here
https://brainly.com/question/19305981
#SPJ4
The given question is incomplete , the complete question is
The dimensions of a triangle are base = 20m , height = 10m . If the height of the triangle is increased by a factor of 4,
Which statement will be true about the area of the triangle ?
(a) The area will increase by a factor of 2
(b) The area will increase by a factor of 4
(c) The area will increase by a factor of 8
(d) The area will not change .
Answer:
the area will increase by
Step-by-step explanation:
what is the value of the expression shown below when x=7? 3x^2 - 2x+3
The expression value of 3x^2 - 2x+3 is 6x^2 - 13x + 6
What is expression value?Value of an Expression The value of the expression is the result of the calculation described by this expression when the variables and constants in it are assigned values. Letters can be used to represent numbers in an algebraic expression.
Apply the distributive property:
→ 3x (2 - 3) - 2 (2x - 3)
Apply the distributive property:
→ 3x (2x) + 3x ⋅ -3 - 2 (2x - 3)
Apply the distributive property:
→ 3x (2x) + 3x ⋅ -3 - 2 (2x) - 2 ⋅ -3
Simplify each term:
→ 6x^2 - 9x - 4x + 6x
Subtract 4x from -9x
→ 6x^ - 13x + 6
Therefore, the expression value of 3x^2 - 2x+3 is 6x^2 - 13x + 6
Learn more about expression value here:
https://brainly.com/question/12370016
#SPJ4
The value of the expression given is 136.
What are Expressions?Expressions are mathematical statements which consist of two or more terms and terms are connected to each other using mathematical operators like addition, multiplication, subtraction and so on.
Given expression is,
3x² - 2x + 3
We have to find the value of the expression when x = 7.
Substitute x = 7.
(3 × 7²) - (2 × 7) + 3 = (3 × 49) - 14 + 3
= 147 - 14 + 3
= 136
Hence the value of the expression is 136.
Learn more about Expressions here :
https://brainly.com/question/13949113
#SPJ2
convert the binary fractional number 0.000112 to a decimal representation. you can use fractions or floating point values, but your answer must be precise. you can use expressions if that's useful.
The decimal representation of the given binary fractional number 0.000112 is 0.109375.
Binary numbers are composed of only 0s and 1s, while decimal numbers are composed of 0-9. Additionally, binary numbers follow a different place value system, where each digit represents a power of 2 rather than a power of 10.
Now, let's focus on the given problem - converting a binary fractional number 0.000112 to a decimal representation. We can use the following formula to convert any binary fraction to decimal:
(decimal equivalent) = (binary digit 1/2¹) + (binary digit 2/2²) + (binary digit 3/2³) + ...
Using this formula, we can start by breaking down the given binary fraction 0.000112 into its individual binary digits:
0.000112 = 0/2¹ + 0/2² + 0/2³ + 1/2⁴ + 1/2⁵ + 1/2⁶
Now, we can simply evaluate each term in the equation and add them up to get the decimal equivalent:
0/2¹ = 0
0/2² = 0
0/2³ = 0
1/2⁴ = 0.0625
1/2⁵ = 0.03125
1/2⁶ = 0.015625
(decimal equivalent) = 0 + 0 + 0 + 0.0625 + 0.03125 + 0.015625 = 0.109375
To know more about binary here.
https://brainly.com/question/19802955
#SPJ4
how to write
526.8- 318.05
Answer:208.75
Step-by-step explanation:
The scores of a certain population on the Wechsler Intelligence Scale for Children (WISC) are thought to be Normally distributed with mean μ and standard deviation σ = 10. A simple random sample of 25 children from this population is taken and each is given the WISC. The mean of the 25 scores is = 104.32.
Based on these data, a 95% confidence interval for μ is
104.32 ± 0.78.
104.32 ± 3.29.
104.32 ± 3.92.
104.32 ± 19.60
If the scores of a certain population are Normally Distributed , and the mean is 104.32 , then the 95% confidence interval is (b) 104.32 ± 3.29 .
The Scores of the population of WISC are Normally Distributed ;
and the Mean(μ) of the 25 scores is = 104.32 ;
the standard deviation(σ) for the population is = 10 ;
the sample size(n) = 25 ;
For the 95% confidence, critical value is = 1.96 ;
So, Confidence interval is written as = μ ± 1.96(σ/√n)
Substituting the required values ,
we get ;
⇒ 104.32 ± 1.96(10/√25)
⇒ 104.32 ± 1.96×2
⇒ 104.32 ± 3.92
Therefore , the required 95% confidence interval is (104.32 ± 3.92) .
Learn more about Confidence Interval here
https://brainly.com/question/24131141
#SPJ4
The given question is incomplete , the complete question is
The scores of a certain population on the Wechsler Intelligence Scale for Children (WISC) are thought to be Normally distributed with mean μ and standard deviation σ = 10. A simple random sample of 25 children from this population is taken and each is given the WISC. The mean of the 25 scores is = 104.32.
Based on these data, a 95% confidence interval for μ is
(a) 104.32 ± 0.78.
(b) 104.32 ± 3.29.
(c) 104.32 ± 3.92.
(d) 104.32 ± 19.60
The displacement (in meters) of a particle moving in a straight line is given by the equation of motions = 4/t2, where t is measured in seconds. Find the velocity of the particle at times t = a, t = 1, t = 2, and t = 3(a) Find the average velocity during each time period. (i) [1, 2] cm/s (ii) [1, 1.1] cm/s
(b) Estimate the instantaneous velocity of the particle when t = 1. cm/s
The velocity of the particle at times t = a, t = 1, t = 2, and t = 3 are:
a) 4/a^2 m/s, 4 m/s, 1 m/s, 4/9 m/s.
b) The instantaneous velocity of the particle when t=1 is 4 m/s.
To find the velocity, we need to take the derivative of the displacement function with respect to time. The derivative of s = 4/t^2 is ds/dt = -8/t^3. So, the velocity of the particle at time t is given by v = ds/dt = -8/t^3.
For t = a, the velocity is v = -8/a^3 m/s. For t = 1, the velocity is v = -8 m/s. For t = 2, the velocity is v = -2 m/s. For t = 3, the velocity is v = -8/27 m/s.
To find the average velocity during the time period [1, 2], we need to find the displacement at t = 2 and t = 1, then calculate the change in displacement divided by the time interval: (4/4 - 4/1)/1 = 0 cm/s. To find the average velocity during the time period [1, 1.1], we need to find the displacement at t = 1.1 and t = 1, then calculate the change in displacement divided by the time interval: (4/1.1^2 - 4/1)/0.1 = -19.60 cm/s.
To estimate the instantaneous velocity of the particle at t = 1, we can plug in t = 1 to the derivative we found earlier: v = -8/1^3 = -8 m/s. Therefore, the instantaneous velocity of the particle when t = 1 is 4 m/s.
Learn more about Displacement:
https://brainly.com/question/1581502
#SPJ4
use fractions from the number lines in problem 1 complete the sentence. use words, pictures, or numbers to explain how you made that comparison
Based on the data, we can infer that the following numbers fill in the blanks: 100 is greater than 10.
How to fill in the blanks?To fill in the blanks we must carefully read the information in the fragment. Once we understand this information we can select the two numbers that meet the rule mentioned in the statement.
According to the above, a correct statement would be:
100 is greater than 10.Additionally, we could put other values that comply with this rule, for example:
1000 is greater than 10020 is greater than 1012 is greater than 9Learn more about mathematics in: https://brainly.com/question/15209879
#SPJ1
the waiting time, in hours, between successive speedersspotted by a radar unit is a continuous random variable wthcumulative distribution function
F(x)=
Find probability of waiting less than 12 min. betweensuccessive speeders?
a) using the cumulative distribution function of X
b) using the probability density function of X
The probability of waiting less than 12 minutes between successive speeders is 0.02.
The time elapsed between successive speeders detected by a radar unit is a random variable with a cumulative distribution function:
F(x) = 0 when x = 0.
x/10, for 0 x ten 1, for x ten
a) Using the cumulative distribution function, to calculate the probability of waiting less than 12 minutes (0.2 hours) between successive speeders: F(0.2):
F(0.2) = 0.2/10 = 0.02
So, the probability of waiting less than 12 minutes between speeders is 0.02.
b) Using the probability density function, we can differentiate the cumulative distribution function with respect to x to find the probability:
For x = 0, f(x) = dF(x)/dx = 0.
1/10 for 0 x 10 0, 0 for x 10
The area under the probability density function up to x=0.2 represents the probability of waiting less than 12 minutes:
P(0 < w < 0.2) = ∫0.2 0 f(x) (x) dx = ∫0.2 0 (1/10) dx = (1/10) * [x] 0.2 = 0.02
Using either the cumulative distribution function or the probability density function, the probability of waiting less than 12 minutes between successive speeders is 0.02.
To learn more about probability density function:
https://brainly.com/question/29575076
#SPJ4
Consider the curve defined parametrically by f(t) = t , - [infinity] < t < [infinity]t² - 4e^t-2 Let g(x,y,z) be a real-valued differentiable function of three variables. If a = (2,0,1) and∂g/∂x (a) = 4, ∂g/∂y(a) = 2, ∂g/∂z(a) = 2, find d (g o f)/dt at t = 2.
The value of the d(g o f)/dt at t = 2 is 14.
We can start by computing the composition (g o f)(t) and then finding its derivative with respect to t using the chain rule.
(g o f)(t) = g(f(t)) = g(t, t^2 - 4e^(t-2))
At t = 2, we have f(2) = 2 and f'(2) = 2t - 4e^(t-2) evaluated at t = 2 gives f'(2) = 0.
To find d(g o f)/dt at t = 2, we first need to evaluate (g o f)(2):
(g o f)(2) = g(f(2)) = g(2, 0) = g(a)
Next, we use the chain rule to find the derivative of (g o f) with respect to t:
[tex](d/dt) (g o f)(t) = (∂g/∂x)(a) (df/dt) + (∂g/∂y)(a) (d/dt) (t^2 - 4e^{(t-2)}) + (∂g/∂z)(a) (dg/dz)(a)[/tex]
Since f(t) = t, df/dt = 1. Also, since g(x,y,z) is differentiable, we can write dg/dz(a) as ∂g/∂z(a) = 2.
Substituting the values we have and evaluating at t = 2, we get:
[tex](d/dt) (g o f)(2) = (4)(1) + (2)(2t - 4e^{(t-2)})(t=2) + (2)(2)[/tex]
= 4 + 2(4-4e^0) + 4
= 14
For more questions on Chain Rule
https://brainly.com/question/26731132
#SPJ4
If RSTU is a parallelogram,
find the length of SU.
please help :)
The length of the diagonal SU will be 46 units.
What is parallelogram?A parallelogram is a quadrilateral with two pairs of equal sides.
Given is a parallelogram RSTU.
The diagonals of a parallelogram bisect each other. This means that -
SV = VU
2x + 3 = 4x - 17
17 + 3 = 4x - 2x
20 = 2x
x = 10
The length SU will be -
SU = SV + VU
SU = 2x + 3 + 4x - 17
SU = 6x - 14
SU = 60 - 14
SU = 46 units
Therefore, the length of the diagonal SU will be 46 units.
To solve more questions on geometry, visit the link below
brainly.com/question/29014197
#SPJ1
A shipment of 1500 washers contains 400 defective and 1100 non-defective washers. Two hundred washers are chosen at random (without replacement) and classified as defective or non-defective_ a) What is the probability that exactly 90 defective washers are found? (Do NOT compute out:) b) What is the probability that at least 2 defective items are found? (Do NOT compute out:)
The probability that exactly 90 defective washers are found is (400 choose 90) * (1100 choose 110) / (1500 choose 200). and the probability that at least 2 defective items are found is (400 choose 1) * (1100 choose 199) / (1500 choose 200).
Let X be the number of defective washers in a sample of 200 washers.
We can model X as a hypergeometric distribution with parameters N = 1500 (total number of washers), K = 400 (total number of defective washers), and n = 200 (sample size).
a) The probability of finding exactly 90 defective washers is:
P(X = 90) = (400 choose 90) * (1100 choose 110) / (1500 choose 200)
This is because we need to choose 90 defective washers from the 400 defective washers, and 110 non-defective washers from the 1100 non-defective washers, out of the total of 200 washers chosen.
b) The probability of finding at least 2 defective items can be calculated as the complement of the probability of finding 0 or 1 defective item in the sample:
P(X >= 2) = 1 - P(X = 0) - P(X = 1)
To compute P(X = 0), we need to choose 0 defective washers from the 400 defective washers, and 200 non-defective washers from the 1100 non-defective washers, out of the total of 1500 washers:
P(X = 0) = (400 choose 0) * (1100 choose 200) / (1500 choose 200)
To compute P(X = 1), we need to choose 1 defective washer from the 400 defective washers, and 199 non-defective washers from the 1100 non-defective washers, out of the total of 1500 washers:
P(X = 1) = (400 choose 1) * (1100 choose 199) / (1500 choose 200)
Once we have computed P(X = 0) and P(X = 1), we can substitute these values into the expression for P(X >= 2) to obtain the desired probability.
To learn more about probability:
https://brainly.com/question/13604758
#SPJ4
Express each set in roster notation. Express the elements as strings, not n-tuples.
(a) A^2, where A = {+, -}.
(b) A^3, where A = {0, 1}.
The expression of a function is
(a) {"++", "+-", "-+", "--"}
(b) {"000", "001", "010", "011", "100", "101", "110", "111"}
(a) Roster notation is used to express a set of elements in a compact form. In this case, A is the set {+, -}, and A^2 is the set of all possible ordered pairs of elements from A. This set can be expressed using roster notation as {"++", "+-", "-+", "--"}. The double symbols indicate the two elements of each ordered pair.
(b) Here, A is the set {0, 1}, and A^3 is the set of all possible ordered triplets of elements from A. This set can be expressed using roster notation as {"000", "001", "010", "011", "100", "101", "110", "111"}. The triple symbols indicate the three elements of each ordered triplet.
Learn more about expression here
https://brainly.com/question/14083225
#SPJ4
7. The total of 13 cherries, 8 more cherries, and 2 more cherries is c.
The value of c is given as follows:
c = 23.
How to obtain the value of c?The problem states that the total of 13 cherries, 8 more cherries, and 2 more cherries is c, hence the value of c is obtained with the addition of these amounts, as follows:
c = 13 + 8 + 2.
Adding these three amounts, the numeric value of c is given as follows:
c = 23.
Missing InformationThe problem asks for the numeric value of c.
More can be learned about addition of amounts at https://brainly.com/question/17301989
#SPJ1
Charlotte and Pablo are each making purple paint by mixing blue
paint and red paint. Charlotte uses 1 cup of red paint for every
2 cups of blue paint. Pablo uses 2 cups of red paint for every
3 cups of blue paint. Whose paint is a bluer shade of purple?
Answer:
Charlotte's mix has a bluer shade of purple
Step-by-step explanation:
Since we are asked whose paint is a bluer shade it would be easier to express the ratios of the paint mix as blue:red
Charlotte: 1 cup red for every 2 cups blue ==> 2 cups blue for every 1 cup red
This can be expressed as the ratio
[tex]\dfrac{ 2 \;blue}{1\;red} = \dfrac{2}{1} = 2[/tex]
[tex]-------------------[/tex]
Pablo : 2 cups red for every 3 cups blue ==> 3 cups blue for every 2 cups red
The ratio of blue to red
= [tex]\dfrac{3 \;blue}{2\;red} = \dfrac{3}{2} = 1\dfrac{1}{2} \;\; (or\; 1.5)[/tex]
Since
[tex]2 > 1\dfrac{1}{2} \;\;\;(or\; 2 > 1.5)[/tex]
Charlotte's mix has a bluer shade of purple
5. without solving, identify 3 equations that you think would be the least difficult to solve and 3 equations that you think would be the most difficult to solve. Explain you reasoning.
Three equations that you think would be the least difficult to solve are,
∛(t + 4) = 3
∛ (r³ - 19) = 2
4 + ∛- m + 4 = 6
And, 3 equations that you think would be the most difficult to solve are,
∛z + 9 = 0
6 - ∛b = 0
∛2n + 3 = - 5
What is an expression?Mathematical expression is defined as the collection of the numbers variables and functions by using operations like addition, subtraction, multiplication, and division.
Now, By all the expressions;
Some expression gives easily real solution after solving.
But here some expression have complex solution after solving and tough to solve.
Thus, By all the expressions,
Three equations that you think would be the least difficult to solve are,
∛(t + 4) = 3
∛ (r³ - 19) = 2
4 + ∛- m + 4 = 6
And, 3 equations that you think would be the most difficult to solve are,
∛z + 9 = 0
6 - ∛b = 0
∛2n + 3 = - 5
Learn more about the mathematical expression visit:
brainly.com/question/1859113
#SPJ1
Let f(x) = −|x−3|+3 and g(x) = 12x−3. Graph the functions in the same coordinate plane.
What are the solutions to f(x)=g(x)?
The graph of the functions f(x) and g(x) on the same coordinates plane and the solution is (0 , 0.818).
What is a function?
A function is a relationship between inputs where each input is related to exactly one output.
Example:
f(x) = 2x + 1
f(1) = 2 + 1 = 3
f(2) = 2 x 2 + 1 = 4 + 1 = 5
The outputs of the functions are 3 and 5
The inputs of the function are 1 and 2.
We have,
Two functions:
f(x) = -|x - 3| + 2
g(x) = 12x - 3
Now,
The graph is given below.
The intersection of the graph of f(x) and g(x) is the solution to f(x) = g(x).
So,
for x> 3 , we can say that
-|x - 3| + 3 = 12x -3
-x + 3 +3 = 12x -3
Therefore , x = 9/11 = 0.818
for x< 3 , we can say that
-|x - 3| + 3 = 12x -3
x - 3 = 12x - 3
x = 0
The solution is (0 , 0.818).
Thus, the solution is (0 , 0.818).
Learn more about functions here:
brainly.com/question/28533782
#SPJ1
A tower made of wooden blocks measures114 feet high. Then a block is added that increases the height of the tower by 8 inches.
What is the final height of the block tower?
Depends how the answer "should" be formatted but 114 2/3 feet should do the trick
Show that in any parallelogram the sum of the squares of the lengths of the four sides equals the sum of the squares of the lengths of the two diagonals.
The statement "parallelogram the sum of the squares of the lengths of the four sides equals the sum of the squares of the lengths of the two diagonals." is proved.
A parallelogram is a quadrilateral with two pairs of parallel sides. The opposite sides of a parallelogram are congruent, meaning they have the same length. Similarly, the opposite angles of a parallelogram are congruent, meaning they have the same measure.
Now, let's consider a parallelogram ABCD with sides AB, BC, CD, and DA. We want to show that:
AB² + BC² + CD² + DA² = AC² + BD²
where AC and BD are the diagonals of the parallelogram.
First, let's draw the diagonals AC and BD. This divides the parallelogram into four triangles: triangle ABC, triangle BCD, triangle CDA, and triangle DAB.
Next, let's use the Pythagorean theorem in each of these triangles. Recall that the Pythagorean theorem states that in a right triangle, the square of the length of the hypotenuse is equal to the sum of the squares of the lengths of the other two sides.
In triangle ABC, we have:
AC² = AB² + BC²
Similarly, in triangle CDA, we have:
AC² = CD² + DA²
Adding these two equations together, we get:
2AC² = AB² + 2BC² + CD² + 2DA²
Now, let's look at triangle ABD. We have:
BD² = AB² + DA²
Similarly, in triangle BCD, we have:
BD² = BC² + CD²
Adding these two equations together, we get:
2BD² = AB² + 2BC² + CD² + 2DA²
Finally, adding the two equations we obtained for AC² and BD², we get:
2AC² + 2BD² = 2AB² + 4BC² + 2CD² + 2DA²
Simplifying this expression, we get:
AC² + BD² = AB² + BC² + CD² + DA²
Therefore, we have proven that in any parallelogram, the sum of the squares of the lengths of the four sides is equal to the sum of the squares of the lengths of the two diagonals.
To know more about parallelogram here.
https://brainly.com/question/29147156
#SPJ4
Bill will run at least 31 miles this week. So far, he has run 16 miles. What are the possible numbers of additional miles he will run? Use t for the number of additional miles he will run. Write your answer as an inequality solved for t.
Answer:
The inequality to set up is [tex]t+16 \ge 31[/tex]
It solves to [tex]t \ge 15[/tex]
Bill needs to run at least 15 more miles.
================================================
Explanation:
He has run 16 miles so far. Add on another t miles to get 16+t or t+16 to represent the total amount he runs. This expression must be 31 or larger
Either t+16 > 31 or t+16 = 31
Those two items condense to [tex]t+16 \ge 31[/tex]
To solve for t, we subtract 16 from both sides to undo the +16.
[tex]t+16 \ge 31\\\\t+16-16 \ge 31-16\\\\t \ge 15\\\\[/tex]
Bill needs to run at least 15 more miles.
Meaning that t = 15, t = 16, t = 17, etc.
Each column of AB is a linear combination of the columns of B using weights from the corresponding column of A. Choose the correct answer below.A.)The statement is true. The definition of AB states that each column of AB is a linear combination of the columns of A using weights from the corresponding rows of B.B.)The statement is true. The definition of AB states that each column of AB is a linear combination of the columns of B using weights from the corresponding column of A.C.) The statement is false. The definition of AB states that each column of AB is a linear combination of the columns of A using weights from the corresponding column of B.D.)The statement is false. The definition of AB states that each column of AB is a linear combination of the columns of A using weights from the corresponding rows of B.
C)The statement is false. The definition of AB states that each column of AB is a linear combination of the columns of B using weights from the corresponding column of A.(C)
To see why this is the case, let A be an m x n matrix and let B be an n x p matrix. Then the product AB is an m x p matrix whose (i,j)-th entry is given by the dot product of the i-th row of A with the j-th column of B:
(AB){i,j} = \sum{k=1}^n a_{i,k} b_{k,j}
This means that the j-th column of AB is obtained by taking a linear combination of the columns of B using the weights from the j-th column of A.
In other words, the statement "each column of AB is a linear combination of the columns of B using weights from the corresponding column of A" is true, but the statement in answer choice C is false.
For more questions like Linear combination click the link below:
https://brainly.com/question/25867463
#SPJ4
It takes 6 hours to travel 372 miles. How long
will it take to travel 279 miles?
The time to travel 279 miles is 4.5 hours
How to determine the time takenWe can use the formula:
time = distance ÷ speed
To find the time it will take to travel 279 miles, given that it takes 6 hours to travel 372 miles.
The speed is constant, so we can find it by dividing the distance by the time for the first trip:
speed = distance ÷ time = 372 miles ÷ 6 hours = 62 miles/hour
Now we can use the speed to find the time it will take to travel 279 miles:
time = distance ÷ speed = 279 miles ÷ 62 miles/hour ≈ 4.5 hours
Hence, it will take approximately 4.5 hours to travel 279 miles at this speed.
Read more about speed at
https://brainly.com/question/24571540
#SPJ1
Find, using the method of volumes by SLICES, the volume of a pyramid of height h with an equilateral triangle base with side a.
The volume of the pyramid of height h with an equilateral triangle base with side a, by using the method of volumes by SLICES is V = a²h/3.
We can use the method of volumes by slices to find the volume of the pyramid.
Consider a slice of the pyramid that is perpendicular to the base and at a distance x from the apex. This slice has a cross-sectional area of a square with side length (base of pyramid) s, We can use the Pythagorean theorem to find that the
Height of the slice is [tex]\sqrt{(a^2 - (a/2)^2 - x^2)} = \sqrt{(3a^2/4 - x^2).[/tex]
Therefore, the volume of the slice is given by the product of its cross-sectional area and height:
dV = s^2 dh = (a^2 - 4x^2)/4 dh
To find the total volume of the pyramid,
we integrate dV from x=0 to x=h:
V = ∫₀ʰ (a²-4x²)/4 dx
Simplifying the integrand, we get:
V = (1/4) ∫₀ʰ (a² - 4x²) dx
V = (1/4) [a²x - (4x³)/3] from x=0 to x=h
V = (1/4) [a²h - (4h³)/3]
V = a²h/3
Therefore, the volume of the pyramid is V = a²h/3.
To know about volumes by SLICES:
https://brainly.com/question/16025389
#SPJ4
I will give brainlist for the right answer!!
use one of these equations to solve!
1. Separation of variables
2.Homogeneous equation
3. Exact equation
I need answer ASAP please!
Answer:
the solution to the differential equation is:
y + (1/3)y^3 = e^x + 1/3.
Step-by-step explanation:
We can use the equation e^x=(1/(1+y^2))dy/dx to solve this differential equation using separation of variables.
First, we can rewrite the equation as:
(1+y^2)dy = e^x dx
Next, we can separate the variables:
(1+y^2)dy = e^x dx
∫ (1+y^2)dy = ∫ e^x dx
y + (1/3)y^3 = e^x + C
where C is the constant of integration.
Now we can use the initial condition to solve for C. Let's say the initial condition is y(0) = 1, then we have:
1 + (1/3)(1)^3 = e^0 + C
4/3 = 1 + C
C = 1/3
Therefore, the solution to the differential equation is:
y + (1/3)y^3 = e^x + 1/3.
The Wakefield High School football team won the regional championship in 2022. A record of their wins and losses is shown, in which the relationship between wins and losses is sorted by number of points scored.
≥ 21 points < 21 points Total
Win 25 45
Loss 3
Total 50
Does the data give evidence of an association between scoring at least 21 points and the football team winning the game?
There is a strong, negative association.
There is a strong, positive association.
There is a weak, negative association.
There is a weak, positive association.
≥ 21 points < 21 points Total
Win 25 45
Loss 3
Total 50
Does the data give evidence of an association between scoring at least 21 points and the football team winning the game?
Does the data give evidence of an association between scoring at least 21 points and the football team winning the game?
Ans. There is a weak, negative association.
What is a Weak, Negative Association?A weak, negative association refers to a relationship between two variables where an increase in one variable is associated with a decrease in the other variable, but the association is not strong.
In statistics, the strength of the association between two variables is measured by a correlation coefficient.
A correlation coefficient ranges from -1 to 1, where -1 represents a perfect negative correlation, 0 represents no correlation, and 1 represents a perfect positive correlation.
Read more about statistics here:
https://brainly.com/question/15525560
#SPJ1
jenny made $126 in 9 hours of work at the same rate how many hours would she have to work to make 252
Which sign makes the statement true?
792 3/20
792 1/2
The sign that makes the statement true is 792 3/20 ≠ 792 1/2.
What is a fraction?A fraction is written in the form of p/q, where q ≠ 0.
There are two types of fractions: proper fractions in which the numerator is less than the denominator and,
Improper fractions in which the numerator is larger than the denominator.
Given, Are two fractions 792 3/20 and 792 1/2.
The sign that makes the statement true is 792 3/20 ≠ 792 1/2.
Some other signs, for example, Inequalities can also make the statement true.
learn more about fractions here :
https://brainly.com/question/10354322
#SPJ9
Drag the tiles to the correct boxes to complete the pairs. Not all tiles will be used.
Match each area to its corresponding radius or diameter of the circle.(All areas are approximate.)
area: 221.5584 square units
area: 78.5 square units
area: 452.16 square units
area: 36.2984 square units
area: 314 square units
area: 886.2336 square units
radius: 12 units
arrowBoth
diameter: 16.8 units
arrowBoth
radius: 3.4 units
arrowBoth
diameter: 10 units
arrowBoth
The areas, diameters, and radii can be grouped as follows:
1. Area: 221.5584 square units
Diameter: 16. 8 units
Radius: 8.4 units
2. Area: 78.5 square units
Diameter: 10 units
Radius: 5 units
3. Area: 452.16 square units
Diameter: 24 units
Radius: 12 units
4. Area: 36.2984 square units
Diameter: 6.8 units
Radius: 3.4 units
5. Area: 314 square units
Diameter: 20 units
Radius: 10 units
6. Area: 886.2336 square units
Diameter: 33.6 units
Radius: 16.8 units
How to calculate the diameter and radiusFirst, we are given the area of the circles. Next, we need to note the formula of the area of a circle and this is: πr²
To get the radius, we can use the formula: √(A/π)
For the first case, we have:
Area = 221.5584 square units
Thus, radius = √(221.5584/3.14)
= 8.4
Since diameter is = 2r, then diameter in this case
= 16.8 units.
Learn more about the area of a circle here:
https://brainly.com/question/14068861
#SPJ1
The length of life Y1 AND Y2
for fuses of a certain type is modeled by the exponential distribution, with
(The measurements are in hundreds of hours.)
a. If two such fuses have independent lengths of life and , find the joint probability density function for and .
b. One fuse in part (a) is in a primary system, and the other is in a backup system that comes into use only if the primary system fails. The total effective length of life of the two fuses is then Find .
a) The joint probability density function is [tex]f(y_1,y_2) = f(y_1) * f(y_2) = (1/3e^{(-y1/3)})(1/3e^{-y2/3})[/tex]
b) The total effective length of life of the two fuses is less than or equal to one.
The exponential distribution is a probability distribution that models the length of life of fuses, and its probability density function can be used to find the joint probability density function for the lengths of two independent fuses.
a) To find the joint probability density function for the lengths of two independent fuses, we simply multiply the probability density functions of each individual fuse. In this case, we have
[tex]= > f(y_1,y_2) = f(y_1) * f(y_2) = (1/3e^{(-y1/3)})(1/3e^{-y2/3})[/tex]
for y₁, y₂ > 0. This is a function that gives the probability of a given pair of lengths (y₁,y₂) occurring.
b) To find P(Y₁ + Y₂ ≤ 1), we must first determine the cumulative distribution function for the sum of the lengths of the two fuses. This is given by
=> F(y) = P(Y₁ + Y₂ ≤ y) = ∫∫f(x,y)dxdy,
where the integral is taken over the region x+y ≤ y. We can simplify this by changing the order of integration:
=> [tex]F(y) = \int0^y\int0^{y-x}f(x,y)dxdy.[/tex]
Using the probability density function given in part (a), we have
=> [tex]F(y) = \int0^y\int0^{y-x}(1/9)e^{-(x+y)/3}dxdy[/tex]
This can be solved using integration by parts or by using the fact that the exponential function integrates to itself, giving
=> [tex]F(y) = 1 - e^{-y/3)(y+3)}[/tex]
Finally, we can find P(Y₁ + Y₂ ≤ 1) by evaluating F(1) - F(0), which gives
=> [tex]P(Y_1 + Y_2 ≤ 1) = 1 - e^{(-1/3)(4/3)}[/tex].
This is a function that gives the probability that the total effective length of life of two fuses is less than or equal to one.
To know more about function here.
https://brainly.com/question/28193995
#SPJ4
Complete Question:
The length of life Y1 AND Y2 for fuses of a certain type is modeled by the exponential distribution, with
[tex]f(y) = \left \{ {1/3e^{-y/3} y > 0,} \atop {0, else where }} \right.[/tex]
(The measurements are in hundreds of hours.)
a) If two such fuses have independent lengths of life Y1 and Y2, find the joint probability density function for Y1 and Y2.
b) One fuse in part (a) is in a primary system, and the other is in a backup system that comes into use only if the primary system fails. The total effective length of life of the two fuses is then Y1 + Y2. Find P(Y1 + Y2 ≤ 1).
Find the equation of the plane that passes through the line of intersection of the planes 2x−3y−z+1=0
and 3x+5y−4z+2=0, and that also passes through the point (3,−1,2)
The equation of the plane that passes through the line of intersection of the two planes and passes through the point (3,-1,2) is x - 2y + 7z - 17 = 0 .
The Plane we want to find passes through the line of intersection of the planes, so it is perpendicular to the normal vectors of both planes.
The Normal Vector of the plane 2x - 3y - z + 1 = 0 is (2, -3, -1), and
the normal vector of the plane 3x + 5y - 4z + 2 = 0 is (3, 5, -4).
The cross product of these two vectors gives a vector which is perpendicular to both of them, and
hence , it lies along the line of intersection of the two planes:
the cross product of (2, -3, -1) x (3, 5, -4) is = (-7, -2, 1) ;
The vector (-7, -2, 1) is the direction vector of the line of intersection.
Now to find the equation of the plane that passes through the point (3, -1, 2) and is perpendicular to this direction vector.
we let , equation of the plane be ax + by + cz + d = 0. We know that the point (3, -1, 2) lies on the plane, so we have:
⇒ a(3) + b(-1) + c(2) + d = 0 ;
⇒ 3a - b + 2c + d = 0 ;
We also know that the plane is perpendicular to the direction vector (-7, -2, 1), so we have:
⇒ a(-7) + b(-2) + c(1) = 0 ;
⇒ -7a - 2b + c = 0 ;
Let say a = 1. Then we have :
⇒ a = 1
⇒ -7a - 2b + c = 0
⇒ 3a - b + 2c + d = 0
Substituting a = 1 into the first equation gives:
⇒ -7 - 2b + c = 0 ;
Solving for c in terms of b gives:
⇒ c = 2b + 7
Simplifying ,
we get ;
⇒ 3 - b + 2(2b + 7) + d = 0 ;
Solving for d in terms of b gives: ⇒ d = -2b - 17 ;
Therefore, the equation of the plane is x - 2y + 7z - 17 = 0 .
Learn more about Equation Of Plane here
https://brainly.com/question/27190150
#SPJ4
Which statement correctly describes the relationship between △ABC and △A′B′C′ ?
a . △ABC is congruent to △A′B′C′ because you can map △ABC to △A′B′C′ using a reflection across the y-axis, which is a rigid motion.
b . △ABC is not congruent to △A′B′C′ because there is no sequence of rigid motions that maps △ABC to △A′B′C′.
c . △ABC is congruent to △A′B′C′ because you can map △ABC to △A′B′C′ using a translation 6 units to the left, which is a rigid motion.
d . △ABC is congruent to △A′B′C′ because you can map △ABC to △A′B′C′ using a translation 6 units to the right, which is a rigid motion.
The correct option is (d): △ABC is congruent to △A′B′C′ because you can map △ABC to △A′B′C′ using a translation 6 units to the right, which is a rigid motion.
In option (a), a reflection across the y-axis is not a rigid motion, as it changes the orientation of the triangles, and therefore cannot be used to show congruence.
In option (b), if there is no sequence of rigid motions that maps △ABC to △A′B′C′, then the triangles are not congruent.
In option (c), a translation 6 units to the left does not map △ABC to △A′B′C′. However, a translation 6 units to the right would map △ABC to △A′B′C′, because translations are rigid motions that preserve distance and angle measures.
Therefore, option (d) is the correct statement that describes the relationship between the two triangles.
Learn more about congruency at
https://brainly.com/question/7888063
#SPJ4
Differentiate Y = 1/x