Answer:
The average rate of change in the number of public library visits from 1993 to 1997 was of 0.1 billion an year.
Step-by-step explanation:
Average rate of change:
Division of the subtraction of the final value by the initial value, divided by the length of time.
The number of visits to public libraries increased from 1.3 billion in 1993 to 1.7 billion in 1997.
Initial value: 1.3 billion
Final value: 1.7 billion
1997 - 1993 = 4 years.
Thus:
[tex]A = \frac{1.7 - 1.3}{4} = \frac{0.4}{4} = 0.1[/tex]
The average rate of change in the number of public library visits from 1993 to 1997 was of 0.1 billion an year.
Which is the graph of f(x) = 2 (4)?
5
40.4)
404)
4
(4,4)
3
3
3 2
2
2
2
(2.1)
6,2)
1
5 -4 -3 -2 -14
1
3
4
-5 4 -3 -2 -14
234
-5 6 -3 -2 -14
2
3
4
5
X
-2
-2
نا دیا
-3
-3
4
W4
-5
5
Tu
5
4
(
24)
Answer:
The Third one
Step-by-step explanation:
Your Welcome :)
Graph of the function is attached below.
Correct option is D.
What is exponential function?As the name suggests, the exponential function contains an exponent. Note, however, that the exponential function has a constant as its base and a variable as its exponent, not vice versa (if a function has a variable as its base and a constant as its exponent, it is a power function). The exponential function can be in one of the following forms:
Definition of exponential function
In mathematics, an exponential function is a function of the form f(x) = aˣ. where "x" is a variable and "a" is a constant called the base of the function, which must be greater than 0.
Given, exponential function
f(x) = (1/4)4ˣ
exponential function is defined for x∈R
Putting x = 0
f(0) = (1/4)4⁰
f(0) = 1/4
Point on curve is (0,1/4)
Putting x = 1
f(1) = (1/4)4¹
f(1) = (1/4)4
f(1) = 1
Point on curve is (1,1)
Putting x = 2
f(2) = (1/4)4²
f(2) = (1/4)16
f(2) = 4
Point on curve is (2,4)
Putting x = 3
f(3) = (1/4)4³
f(3) = (1/4)64
f(3) = 16
Point on curve is (3,16)
Point (0, 1/4), (1, 1), (2, 4), (3, 16) can be used to draw graph of the function.
Hence, graph of the function is drawn as follows.
Learn more about exponential function here:
https://brainly.com/question/14355665
#SPJ7
=
SYSTEMS
Solving a value mixture problem using a system of linear...
Somel
A delivery truck is transporting boxes of two sizes: large and small. The combined welght of a large box and a small box is 85 pounds. The truck is transporting
70 large boxes and 50 small boxes. If the truck is carrying a total of 5350 pounds in boxes, how much does each type of box weigh?
9514 1404 393
Answer:
large: 55 lbsmall: 30 lbStep-by-step explanation:
Let x and y represent the weights of the large and small boxes, respectively. The problem statement gives rise to the system of equations ...
x + y = 85 . . . . . combined weight of a large and small box
70x +50y = 5350 . . . . combined weight of 70 large and 50 small boxes
We can subtract 50 times the first equation from the second to find the weight of a large box.
(70x +50y) -50(x +y) = (5350) -50(85)
20x = 1100 . . . . simplify
x = 55 . . . . . . . divide by 20
Using this in the first equation, we can find the weight of a small box.
55 +y = 85
y = 30 . . . . . . . subtract 55
A large box weighs 55 pounds; a small box weighs 30 pounds.
Calculate the remaining values: de a y b
Step-by-step explanation:
of what ? there is nothing here to work with.
be a little bit more careful to at least understand the meaning of the problem, Ame what is given to you written with to solve the problem. because we here also need that information. we would need to read in a Crystal ball what your teacher wants from you, if you don't give us that information.
and I am good but not that good ...
What is the product of 5.2×104 and 1.3×10-2?
Answer:
551.8
Step-by-step explanation:
5.2\times 104 is 540.8
1.3\times 10-2 is 11
540.8 + 11 =551.8
Answer:
The answer is 676.
Step-by-step explanation:
I think you mean 5.2 multiplied by [tex]10^{4}[/tex], and 1.3 multiplied by [tex]10^{-2}[/tex].
Or do you mean 5.2 multiplied by 104 and 1.3 multiplied by 10 then subtract 2? Not really clear, but I'm going to go with the first option.
5.2 * [tex]10^{4}[/tex] = 52,000
1.3 * [tex]10^{-2}[/tex] = 0.013
52,000 * 0.013 = 676
The answer is 676.
The dean of the UTC Engineering School at a small Florida college wishes to determine whether the grade-point average (GPA) of a graduating student can be used to predict the graduate's starting salary. More specifically, the dean wants to know whether higher GPAs lead to higher starting salaries. Records for 23 of last year's Engineering School graduates are selected at random, and data on GPA and starting salary ( in $thousands) for each graduate were used to fit the model The dependent variable is____________________________.
Answer:
grade-point average (GPA).
Step-by-step explanation:
The Independent variable may be explained as the variable which is used to manipulate the variable to be predicted. The Independent variable also called the predictor variable takes up several input values in other to observe how the predicted variable changes due to this independent variable. In the scenario described above, the independent variable is the Grade - point average, as it is used to make prediction or manipulate the value of the starting salary earned by a graduate. The starting salary earned is the predicted variable or dependent variable in this scenario.
Which two graphs can be combined to represent 140% HELP PLEASE
Answer:
Step-by-step explanation:
Since all the grids have 100 squares, which grid has all squares shaded? And which grid has 40 (4 columns) shaded? This add up to 100+40=140. The answer, of course, is C+D (last answer). None of the others have enough shaded squares
Which angles are vertical?
∠PKO and ∠MKN
∠LKM and ∠MKN
∠PKO and ∠PKL
∠MKN and ∠OKN
Answer:
Step-by-step explanation:
Answer: ∠PKO and ∠MKN
Explanation: Angles that are opposite each other when two lines intersect each other are vertical angles.
The correct answer is ∠PKO and ∠MKN. These angles are vertical angles because they are opposite each other when lines PK and KM intersect.
The angles that are vertical are angles that are opposite each other when two lines intersect. In the given options, ∠PKO and ∠MKN are vertical angles because they are opposite each other when lines PK and KM intersect.
To understand why these angles are vertical, let's look at the lines PK and KM intersecting at point K. When two lines intersect, they form four angles around the point of intersection.
In this case, we have ∠PKO, ∠MKN, ∠OKN, and ∠PKL. Now, let's focus on ∠PKO and ∠MKN. These angles are opposite each other when lines PK and KM intersect at point K.
In other words, if you extend lines PK and KM, ∠PKO and ∠MKN are on opposite sides of the intersection point K. On the other hand, ∠LKM and ∠PKL are not vertical angles because they are not opposite each other when lines PK and KM intersect.
Similarly, ∠MKN and ∠OKN are not vertical angles because they are not opposite each other when lines PK and KM intersect. Therefore, the correct answer is ∠PKO and ∠MKN. These angles are vertical angles because they are opposite each other when lines PK and KM intersect.
To Know more about angles here
https://brainly.com/question/25716982
#SPJ2
Pls help ASAP pleases
Answer:
I think B
Step-by-step explanation:
1)
Ay
X
1
A)
Nin
B) -2
2
C)
D) 2.
2
Answer:
A) -1/2
Step-by-step explanation:
the slope is defined by the ratio of y/x.
that means that for a change of a certain number of units in x, y changes this number of units.
e.g. a slope of 5/3 means, if x changes by 3 units, y changes by 5.
the graphic shows a line that goes "down" with increasing x.
that means the slope is negative.
that eliminates C and D.
and we see that when x increases by 2 units, y decreases by 1 unit.
that means the slope is -1/2.
what is the value of a+bc when a=4, b=6 and c =2? also please include how to do it step by step :)
Answer:
16
Step-by-step explanation:
a+bc
a+(b×c)
4+(6×2)
4+12
answer=16
Which of the following is a solution of y > |x| - 5?
Answer:
download gauthmath it will help you answer this
Solve for x.
1)
15x - 5
13x + 9
A) 6
C) 9
B) 3
D) 7
Answer:
D) 7
Step-by-step explanation:
Vertical pair meaning that the two angles are congruent meaning that they are equal to each other. So 15x-5=13x+9. Subtract 13x to get 2x-5+9. Then ad five to each side to get 2x=14 and divide each side by 2 to get x equals 7. Hope I helped and post more questions :)
PLEASE HELP!!
Jo measures the length of a rope and records her measurement correct to the nearest ten centimetres.
The upper bound for her measurement is 12.35 m.
Write down the measurement she records.
Answer:
1230 cm
Step-by-step explanation:
convert metres to centimetres.
the answer must be less than upper bound.
[tex]1225 \leqslant 1230 < 1235[/tex]
Will mark brainliest if CORRECT
write the reciprocal
[tex] \frac{3}{8 } = [/tex]
Answer:
8/3
Step-by-step explanation:
The reciprocal is just the fraction but flipped
The reciprocal of [tex]\frac{3}{8} [/tex] is [tex]\frac{8}{3} [/tex].
Explanation:
Reciprocal is defined as the inverse of a value or a number.
[tex]\bold{ \green{ \star{ \orange{Mystique35}}}}⋆[/tex]
Tanisha has 7 less than 4 times as many toy cars as Fernando. If Tanisha has 9 cars, how many cars does Fernando have?
1
c. 2
b. 4
d. 14
a.
Help
Answer:
4
Step-by-step explanation:
T = 9
T = 4F - 7
9 = 4F - 7
16 = 4F
F = 4
The number 0.2 can be written as 2/10 so it is a rational number
What is the value of (-3 + 31) + (-2+31)?
Answer:
57
Step-by-step explanation:
31-3=28
31-2=29
28+29=57
reflection across the y-axis
Answer:
The y axis is the vertical line in the middle if we reflected it over the middle it would look the same but on the other side of the graph the same distance from the y-axis and rotated 180 degree
Hope This Helps!!!
The average age of the 12 people in a classroom is 10. After Ms. Xu walks into the room,
the average age of everyone in the classroom increases to 12. How old is Ms. Xu?
Answer:
24
Step-by-step explanation:
First: 12*10=120
Then: 12*12=144
=> Ms. Xu's old: 144-120=24
Help me if you don't know, don't touch it please
Answer:
V≈718.38 cm cubed
A 64-inch board is cut into three pieces so that the second piece is twice as long as the first piece, and the third
piece is 5 times as long as the first piece. Find the length of the longest piece.
==========================================================
Explanation:
x = first piece2x = second piece, since its twice as long as the first5x = third piece, since its five time as long as the firstx is some positive real number, and the units of each are in inches.
Add up the smaller pieces and we should get 64 inches back again
x+2x+5x = 64
8x = 64
x = 64/8
x = 8
The first piece is 8 inches long.
2x = 2*8 = 16 is the length of the second piece (in inches)
The third piece is 40 inches because 5x = 5*8 = 40
--------
Summary:
first = 8 inches
second = 16 inches
third = 40 inches
Check: 8+16+40 = 64, which confirms the answer
I made a fort by two boxes. The first box is 4 meters long, 8 meters wide, and 8 meters high. The second box is 2 meters long, 7 meters wide, and 1 meter high. How many cubic meters of space does my fort have?
Answer:
242 m³ of space is there in the fort.
Step-by-step explanation:
Given that,
The dimensions of first box is 4 meters long, 8 meters wide, and 8 meters high.
The dimensions of the second box is 2 meters long, 7 meters wide, and 1 meter high.
Space left = Volume of first box - volume of second box
= (4)(8)(8) - 2(7)(1)
= 242 m³
So, 242 m³ of space is there in the fort.
solve consult limit n·(e^-n)
Answer:
The value of the limit is 0.
Step-by-step explanation:
We are given the following limit:
[tex]\lim_{n \rightarrow \infty} ne^{-n}[/tex]
Simplifying the function:
[tex]\lim_{n \rightarrow \infty} \frac{n}{e^{n}}[/tex]
Replacing infinity at the numerator and denominator, we get infinity divided by infinity. Thus, L'Hospital Theorem can be applied, which means that we find the limit of the derivative of the numerator and the denominator.
Derivative of n is 1, of [tex]e^n[/tex] is [tex]e^n[/tex]
Then
[tex]\lim_{n \rightarrow \infty} \frac{n}{e^{n}} = \lim_{n \rightarrow \infty} \frac{1}{e^{n}} = \frac{1}{\infty} = 0[/tex]
The value of the limit is 0.
A tank contains 1000L of pure water. Brine that contains 0.04kg of salt per liter enters the tank at a rate of 5L/min. Also, brine that contains 0.06kg of salt per liter enters the tank at a rate of 10L/min. The solution is kept thoroughly mixed and drains from the tank at a rate of 15L/min.
1. How much salt is in the tank after t minutes?
2. How much salt is in the tank after 60 minutes?
Answer:
1) x = [ - (12/1000)* e∧ ( - 15/1000)*t + 12/1000 ] /e∧ - (15/1000)*t
2) x = - 0,012 * ( e ∧ 0.18 + 0,012 ) / e∧-0,18
Step-by-step explanation:
1.-Quantity of salt in the tank after t minutes
The rate of change of the quantity of salt in the tank is:
dx(t) /dt = original quantity (0) + input quantity - output quantity (1)
quantity = concentration* rate Then
input quantity = 0.04 Kg/lt * 5 Lt/min + 0.06 Kg/lt * 10Lt/min = 0.2 Kg/min
+ 0.6 Kg/min = 0,8 Kg/lt
output quantity = Output concentration * rate of draining
rate of draining = 15 Lt/min
The input quantity and the output quantity occur at the same rate therefore the volume in the tank is constant 1000Lt.
output quantity = (x/1000 )*15
Plugging these values in equation (1) we get.
dx/dt = 0,8 - ( x/1000)* 15
The last one is a differential first-order equation like
x´ + P(t)*x = q(t)
and the solution is:
x*μ = ∫ q(t)*μ*dt + C
where μ is the integration factor e ∧ ∫p(t)*dt
let´s call b = -15/1000
μ = e ∧ ∫p(t)*dt = e∧∫ b*dt = e∧ b*t = e∧ ( -15/1000)*t
μ = e∧ - (15/1000)*t
Then x*μ = x * e∧ - (15/1000)*t
∫ q(t)*μ*dt = ∫ 0.8 * e∧ - (15/1000)*t*dt = 0.8 * ∫ e∧bt * dt
∫ q(t)*μ*dt = 0.8 * ( 1/b ) e∧bt = - 0,8 *( 15/1000) * e∧ ( - 15/1000)*t
∫ q(t)*μ*dt = - (12/1000)* e∧ ( - 15/1000)*t
x * e∧ - (15/1000)*t = - (12/1000)* e∧ ( - 15/1000)*t + C
Initial condition t = 0 x = 0
0 = - (12 / 1000 )* e⁰ = C
C = 12/1000
x * e∧ - (15/1000)*t = - (12/1000)* e∧ ( - 15/1000)*t + 12/1000
x = [ - (12/1000)* e∧ ( - 15/1000)*t + 12/1000 ] /e∧ - (15/1000)*t
When t = 60 min
x = [ - (12/1000)* e∧ ( - 15/1000)*12 + 12/1000 ] / e∧ - (15/1000) * 12
x = - 0,012 * ( e ∧ 0.18 + 0,012 ) / e∧-0,18
A farmer finds there is a linear relationship between the number of bean stalks, n, she plants and the yield, y, each plant produces (in ounces). When she plants 30 stalks, each plant yields 30 oz of beans. When she plants 34 stalks, each plant produces 28 oz of beans. Find an equation that gives the yield y when n stalks are planted.
Answer:
[tex]y = -\frac{1}{2}n + 15[/tex]
Step-by-step explanation:
Linear equation:
A linear equation has the following format:
[tex]y(n) = an + b[/tex]
In which a is the slope and b is the y-intercept.
When she plants 30 stalks, each plant yields 30 oz of beans. When she plants 34 stalks, each plant produces 28 oz of beans.
This means that we have these following two points: (30,30) and (34,28).
Finding the slope:
When we have two points, the slope is given by the change in the output y divided by the change in the input n.
Change in the output: 30 - 28 = 2.
Change in the input: 30 - 34 = -4. So
[tex]a = \frac{2}{-4} = -\frac{1}{2}[/tex]
So
[tex]y = -\frac{1}{2}n + b[/tex]
Finding b:
When [tex]n = 30, y = 30[/tex]. We replace this into the equation to find b. So
[tex]y = -\frac{1}{2}n + b[/tex]
[tex]b = -\frac{1}{2}(30) + 30[/tex]
[tex]b = -15 + 30 = 15[/tex]
So
[tex]y = -\frac{1}{2}n + 15[/tex]
Which line is a linear model for the data?
Please Please help me
Answer:
Top left graph
General Formulas and Concepts:
Statistics
Scatter PlotsBest Line of FitStep-by-step explanation:
The best linear model for the data would be the best line of fit for the data. We can eliminate the rightmost graphs as they have no correlation with the data.
Between the leftmost graphs, we can see that the top left graph would be choice as it encompasses most of the data/is more of the data's average than the bottom one.
Ivan runs a cake shop. Renting the
shop costs him $1600 per month,
and he makes a profit of $16 on each
cake he sells. Ivan wants a profit of at
least $2000 a month.
A sample of 46 observations is selected from one population with a population standard deviation
of 4.1. The sample mean is 102.0. A sample of 48 observations is selected from a second
population with a population standard deviation of 5.8. The sample mean is 100.1. Using the 0.05
significance level, is there a difference between the two samples?
Answer:
there is no significant evidence to conclude that there is difference between the two samples.
Step-by-step explanation:
Given :
x1 = 102 ; σ1 = 4.1 ; n1 = 46
x2 = 100.1 ; σ2 = 5.8 ; n2 = 48
H0 : μ1 = μ2
H0 : μ1 ≠ μ2
The test statistic :
The test statistic :
(x1 - x2) / sqrt[(σ1²/n1 + σ2²/n2)]
(102 - 100) / sqrt[(4.1²/46 + 5.8²/48)]
2 / 1.0326025
Test statistic = 1.937
The Pvalue from test statistic score ;
Pvalue = 0.052745
Pvalue > α ; Fail to reject the null ; Hence, there is no significant evidence to conclude that there is difference between the two samples.
4(2x + 3) ÷ 5y
The expression above provides an example of each of the following: sum, term, product, factor, quotient, and coefficient. If any are not present, write "not present."
Answer:
8xy+12y/5
Step-by-step explanation:
write the division as a fraction
4(2x+3)/5 y
Calaucte the product
4y(2x+3)/5
Distbtute 4y through the parentheis
8xy+12y/5
which gives you 8xy+12y/5