What is the difference in the interest that would have accrued if all of the money from question
#9 had only been in the savings account for the same 60 days?

Answers

Answer 1

We'll presume that the cash in question were initially split between two accounts since we don't know the answer to question #9: the amount that has been sitting in a savings account for 60 days is $78.00.

Where ought I to put my cash?

Because the FDIC for savings accounts and the NCUA for community bank accounts guarantee all deposit made by consumers, savings are a secure location to put your money.

Is keeping money in a savings account wise?

Savings accounts might assist you avoid overspending by keeping the money away from your spending account. You should save emergency cash in your bank account for easy access. Savings accounts keep money secure because the Deposit Insurance Corporation of the United States insures them for up to $250,000.

To know more about savings account visit:

https://brainly.com/question/29302740

#SPJ1


Related Questions

24 356 ÷ 5 using long division.​

Answers

Answer:

24 356 ÷ 5 using long division.

Step-by-step explanation:

See the image

Distance in the coordinate plane iready

Answers

Answer:

Distance in the coordinate plane iready

Step-by-step explanation:

Sure, I can help with distance in the coordinate plane!

The distance between two points (x1, y1) and (x2, y2) in the coordinate plane can be found using the distance formula:

d = √((x2 - x1)^2 + (y2 - y1)^2)

Here's an example:

Let's say we want to find the distance between the points (3, 4) and (6, 8).

We can plug these coordinates into the distance formula:

d = √((6 - 3)^2 + (8 - 4)^2)

Simplifying the expression inside the square root:

d = √(3^2 + 4^2)

d = √(9 + 16)

d = √25

d = 5

Therefore, the distance between the points (3, 4) and (6, 8) is 5 units.

2. The directions for sewing a scarf says that you must purchase 1.75 yards of fleece
fabric. The cost per yard is $10.30. How much will you need to spend on fleece fabric?

Answers

Answer:

$18.03

Step-by-step explanation:

10.30 x 1.7 = 18.025

round answer to 18.3

Answer: $18.03

Step-by-step explanation:

1.75 x 10.3 = 18.025

18.025 ≈ 18.03

ne al Compute the derivative of the given function. TE f(x) = - 5x^pi+6.1x^5.1+pi^5.1

Answers

The derivative of f(x) is

[tex]f'(x) = -5pi x^(pi-1) + 6.1 * 5.1x^(5.1-1) + 5.1pi^(5.1-1)[/tex].

What is derivative?

The derivative of a function is a measure of how that function changes as its input changes. Derivatives are also used in calculus to find the area under a curve, or to solve differential equations.

In this case, the function f(x) is a polynomial, which means it is a combination of terms of the form [tex]ax^b[/tex], where a and b are constants. The derivative of f(x) can be calculated by taking the derivative of each term in the function and then combining them together.

The derivative of a term [tex]ax^b[/tex] is [tex]abx^(b-1)[/tex]. For the first term of f(x),[tex]-5x^pi[/tex], the derivative is [tex]-5pi x^(pi-1)[/tex]. For the second term, [tex]6.1x^5.1[/tex] the derivative is[tex]6.1 * 5.1x^(5.1-1)[/tex]. For the third term, [tex]pi^5.1[/tex], the derivative is [tex]5.1pi^(5.1-1)[/tex].

Combining these terms together, the derivative of f(x) is

[tex]f'(x) = -5pi x^(pi-1) + 6.1 * 5.1x^(5.1-1) + 5.1pi^(5.1-1)[/tex].

This answer is the derivative of the given function. This is how the function changes as its input changes.

For more questions related to function

https://brainly.com/question/24748644

#SPJ1

The derivative of f(x)= [tex]-5x^{\pi}+6.1x^{5.1}+\pi^{5.1}[/tex] is  [tex]-5\pi x^{\pi -1}[/tex]+  [tex]6.1*5.1x^{5.1-1}[/tex] +5.1[tex]\pi^{5.1-1}[/tex] which can be calculated with the power rule.

What is derivative?

The derivative of a function is a measure of how that function changes as its input changes. Derivatives are also used in calculus to find the area under a curve, or to solve differential equations.

The derivative of the given function f(x) = [tex]-5x^{\pi}+6.1x^{5.1}+\pi^{5.1}[/tex] can be calculated with the power rule, which states that the derivative of xⁿ is nx⁽ⁿ⁻¹⁾

To calculate the derivative of the given function, we begin by applying the power rule to each term.

The first term is [tex]-5^{\pi }[/tex] which has a derivative of [tex]-5\pi x^{\pi -1}[/tex].

The second term is [tex]6.1x^{5.1}[/tex] which has a derivative of [tex]6.1*5.1x^{5.1-1}[/tex].

The third term is [tex]\pi^{5.1}[/tex], which has a derivative of 5.1[tex]\pi^{5.1-1}[/tex].

Therefore, the derivative of the given function

f(x)= [tex]-5x^{\pi}+6.1x^{5.1}+\pi^{5.1}[/tex] is  [tex]-5\pi x^{\pi -1}[/tex]+  [tex]6.1*5.1x^{5.1-1}[/tex] +5.1[tex]\pi^{5.1-1}[/tex].

For more questions related to function

https://brainly.com/question/24748644

#SPJ1

Question:

Compute the derivative of the given function.

f(x) = - [tex]5x^{\pi }[/tex]+[tex]6.1x^{5.1}[/tex]+[tex]\pi^{5.1}[/tex]

Use the shell method to set up and evaluate the integral that gives the volume of the solid generated by revolving the plane region about the y-axis. (Round your answer to three decimal places.)

Answers

Answer:

1.066 (3 d.p.)

Step-by-step explanation:

The volume of the solid formed by revolving a region, R, around a vertical axis, bounded by x = a and x = b, is given by:

[tex]\displaystyle 2\pi \int^b_ar(x)h(x)\;\text{d}x[/tex]

where:

r(x) is the distance from the axis of rotation to x.h(x) is the height of the solid at x (the height of the shell).

[tex]\hrulefill[/tex]

We want to find the volume of the solid formed by revolving a region, R, around the y-axis, where R is bounded by:

[tex]y=\dfrac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{3}}[/tex]

[tex]y=0[/tex]

[tex]x=0[/tex]

[tex]x=1[/tex]

As the axis of rotation is the y-axis, r(x) = x.

Therefore, in this case:

[tex]r(x)=x[/tex]

[tex]h(x)=\dfrac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{3}}[/tex]

[tex]a=0[/tex]

[tex]b=1[/tex]

Set up the integral:

[tex]\displaystyle 2\pi \int^{1}_0x \cdot\dfrac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{3}}\;\text{d}x[/tex]

Take out the constant:

[tex]\displaystyle 2\pi \cdot \dfrac{1}{\sqrt{2\pi}}\int^{1}_0x \cdot e^{-\frac{x^2}{3}}\;\text{d}x[/tex]

[tex]\displaystyle \sqrt{2\pi}\int^{1}_0x \cdot e^{-\frac{x^2}{3}}\;\text{d}x[/tex]

Integrate using the method of substitution.

[tex]\textsf{Let}\;u=-\dfrac{x^2}{3}\implies \dfrac{\text{d}u}{\text{d}x}=-\dfrac{2x}{3}\implies \text{d}x=-\dfrac{3}{2x}\;\text{d}u[/tex]

[tex]\textsf{When}\;x=0 \implies u=0[/tex]

[tex]\textsf{When}\;x=1 \implies u=-\dfrac{1}{3}[/tex]

Rewrite the original integral in terms of u and du:

[tex]\displaystyle \sqrt{2\pi}\int^{-\frac{1}{3}}_0x \cdot e^{u}\cdot -\dfrac{3}{2x}\;\text{d}u[/tex]

[tex]\displaystyle \sqrt{2\pi}\int^{-\frac{1}{3}}_0 -\dfrac{3}{2}e^{u}\; \text{d}u[/tex]

[tex]-\dfrac{3\sqrt{2\pi}}{2}\displaystyle \int^{-\frac{1}{3}}_0 e^{u}\; \text{d}u[/tex]

Evaluate:

[tex]\begin{aligned}-\dfrac{3\sqrt{2\pi}}{2}\displaystyle \int^{-\frac{1}{3}}_0 e^{u}\; \text{d}u&=-\dfrac{3\sqrt{2\pi}}{2}\left[ \vphantom{\dfrac12}e^u\right]^{-\frac{1}{3}}_0\\\\&=-\dfrac{3\sqrt{2\pi}}{2}\left[ \vphantom{\dfrac12}e^{-\frac{1}{3}}-e^0\right]\\\\&=-\dfrac{3\sqrt{2\pi}}{2}\left[ \vphantom{\dfrac12}e^{-\frac{1}{3}}-1\right]\\\\&=1.06582594...\\\\&=1.066\; \sf (3\;d.p.)\end{aligned}[/tex]

Therefore, the volume of the solid is approximately 1.066 (3 d.p.).

[tex]\hrulefill[/tex]

[tex]\boxed{\begin{minipage}{3 cm}\underline{Integrating $e^x$}\\\\$\displaystyle \int e^x\:\text{d}x=e^x(+\;\text{C})$\end{minipage}}[/tex]

Write the polynomial in factored form. Check by multiplication.
x³-6x² - 7x
x³-6x² - 7x= ?
(Factor completely.)

Answers

Answer:

[tex]p(x)=(x+5)(x-3)(x+4)[/tex]

Step-by-step explanation:

Given : [tex]p(x)=x^3+6x^2-7x-60[/tex]

Solution :

Part A:

First find the potential roots of p(x) using rational root theorem;

So, [tex]\text{Possible roots = }\pm\frac{\text{factors of constant term}}{\text{factors of leading coefficient}}[/tex]

Since constant term = -60

Leading coefficient = 1

[tex]\text{Possible roots = }\pm\frac{\text{factors of 60}}{\text{factors of 1}}[/tex]

[tex]\text{Possible roots = }\pm\frac{\text{1,2,3,4,5,6,10,12,15,20,60}}{\text{1}}[/tex]

Thus the possible roots are [tex]\pm1,\pm2,\pm3,\pm4,\pm5,\pm6,\pm10,\pm12,\pm15,\pm20,\pm60[/tex]

Thus from the given options the correct answers are -10, -5, 3, 15

Now For Part B we will use synthetic division

Out of the possible roots we will use the root which gives remainder 0 in synthetic division :

Since we can see in the figure With -5 we are getting 0 remainder.

Refer the attached figure

We have completed the table and have obtained the following resulting coefficients: 1 , 1,−12,0.  All the coefficients except the last one are the coefficients of the quotient, the last coefficient is the remainder.

Thus the quotient is

And remainder is 0 .

So to get the other two factors of the given polynomial we will solve the quotient by middle term splitting

[tex]x^2+x-12=0[/tex]

[tex]x^2+4x-3x-12=0[/tex]

[tex]x(x+4)-3(x+4)=0[/tex]

[tex](x-3)(x+4)=0[/tex]

Thus x - 3 and x + 4 are the other two factors

So, p(x)=(x+5)(x-3)(x+4)

the expression the quantity cosecant squared of theta minus 1 end quantity over cotangent of theta simplifies to which of the following?

Answers

Students were asked to simplify the expression using trigonometric identities:

 A.  student A is correct; student B was confused by the division

 B.  3: cos²(θ)/(sin(θ)csc(θ)); 4: cos²(θ)

Trigonometric Identities are equality statements that hold true for all values of the variables in the equation and that use trigonometry functions.

There are several distinctive trigonometric identities that relate a triangle's side length and angle. Only the right-angle triangle is consistent with the trigonometric identities.

The six trigonometric ratios serve as the foundation for all trigonometric identities. Sine, cosine, tangent, cosecant, secant, and cotangent are some of their names.

Each student correctly made use of the trigonometric identities

cosec(θ) = 1/sin(θ)

1 -sin²(θ) = cos²(θ)

A.

Student A's work is correct.

Student B apparently got confused by the two denominators in Step 2, and incorrectly replaced them with their quotient instead of their product.

The transition from Step 2 can look like:

[tex]\frac{(\frac{1-sin^2\theta}{sin\theta} )}{cosec\theta} =\frac{1-sin^2\theta}{sin\theta} .\frac{1}{cosec\theta} =\frac{cos^2\theta}{(sin\theta)(cosec\theta)}[/tex]

Learn more about Simplify expressions:

https://brainly.com/question/29163610

#SPJ4

Complete question:

Students were asked to simplify the expression the quantity cosecant theta minus sine theta end quantity over cosecant period Two students' work is given. (In image below)

Part A: Which student simplified the expression incorrectly? Explain the errors that were made or the formulas that were misused. (5 points)

Part B: Complete the student's solution correctly, beginning with the location of the error. (5 points)

I will mark you brainiest!

Given the diagram below and the fact that KH is a perpendicular bisector of IG, which of the following statements must be true?

A) IJ ≅ JG
B) EI ≅ JH
C) EK ≅ JG

Answers

Answer:

A

Step-by-step explanation:

Congruent triangles

Answer:

A) IJ is congruent (equally long) to JG.

Step-by-step explanation:

KH splits IG and EF each into 2 equal halves.

the other answer options compare not-correlating distances, and so, they are not surprisingly not equally long.

his yearly salary is $78000
.

Calculate his fortnightly income. (Use 26
fortnights in a year.)

Fortnightly income =
$

Answers

His fortnightly income is $3000 where the yearly salary is $78000 using 26 fortnights in a year.

What is fortnightly income?

Fortnightly income is the amount of income a person earns every two weeks. It is usually calculated by dividing the person's yearly income by the number of fortnights in a year, which is typically 26.

According to question:

To calculate the fortnightly income (F), we need to divide the yearly salary (Y) by the number of fortnights in a year (N), which is 26.

So mathematically, we can express the calculation of the fortnightly income as:

F = Y / N

Substituting the given values, we get:

F = $78000 / 26

Simplifying the expression, we get:

F = $3000

Therefore, his fortnightly income is $3000.

For example, if a person's yearly salary is $52,000, their fortnightly income would be calculated as:

Fortnightly income = Yearly salary / Number of fortnights

Fortnightly income = $52,000 / 26

Fortnightly income = $2,000

The person's fortnightly income would be $2,000.

To know more about fortnightly income visit:

https://brainly.com/question/23889295

#SPJ1

The complete question is Tom’s yearly salary is $78000. Calculate Tom’s fortnightly income. (Use 26 fortnights in a year). Fortnightly income = ?$

Suppose A and B are invertible matrices. Mark each statement as true or false. True means that the statement is true for all invertible matrices A and B.
(In−A)(In+A)=In−A2.
Choose True False
(AB)^−1=A^−1B^−1.
Choose True False
A+B is invertible.
Choose True False
A7 is invertible.
Choose True False
(A+B^)2=A^2+B^2+2AB.
Choose True False

Answers

The true statement for all invertible matrices A and B are

1. (In−A)(In+A)=In−A².

2. (AB)⁻¹=A⁻¹B⁻¹

4. A⁷ is invertible.

The given statement is true for all invertible matrices A. To prove this statement, we can expand the left-hand side of the equation as follows:

(In−A)(In+A) = In(In) + In(A) − A(In) − A(A)

= In² + InA − AIn − A²

= In + InA − AIn − A²

= In − A²

Therefore, we have shown that (In−A)(In+A)=In−A2 is true for all invertible matrices A.

The statement is true for all invertible matrices A and B. To prove this statement, we can use the definition of the inverse of a matrix. The inverse of a matrix A is a matrix A⁻¹ such that AA⁻¹ = A⁻¹A = I, where I is the identity matrix. Using this definition, we can show that:

(AB)(A⁻¹B⁻¹) = A(BB⁻¹)A⁻¹ = AIA⁻¹ = AA⁻¹ = I

(B⁻¹A⁻¹)(AB) = B⁻¹(A⁻¹A)B = B⁻¹IB = BB⁻¹ = I

Therefore, we have shown that (AB)⁻¹ = A⁻¹B⁻¹ is true for all invertible matrices A and B.

The statement is false in general. For instance, consider the matrices A = [1 0] and B = [−1 0]. Both A and B are invertible matrices, but A + B = [0 0] which is not invertible as it is not a full rank matrix.

The statement is true for all invertible matrices A. To prove this statement, we can use the fact that the product of invertible matrices is also invertible. Since A is invertible, we can write:

A⁷ = AAAA...A

= A⁶A

= (A⁻¹)⁻¹A⁶A

= (A⁻¹A)⁻¹A⁶A

= IA⁶A

= A⁶

We can repeat this process until we get A⁷ = (A⁻¹)⁻¹. Thus, A⁷ is invertible for all invertible matrices A.

The statement is false in general. To show this, we can use a counterexample. Let A = [1 0] and B = [0 −1]. Then,

(A + B)² = [1 −1][1 −1]

= [0 0]

To know more about matrix here

https://brainly.com/question/28180105

#SPJ4

In the following alphanumeric series, what letter comes next? V, Q, M, J, H, …

Answers

According to the given information, the letter that comes next in the given alphanumeric series is "N".

What is alphanumeric series?

An alphanumeric series is a sequence of letters and/or numbers that follows a certain pattern or rule. For example, "A, B, C, D, E..." is an example of an alphabetical series, and "1, 3, 5, 7, 9..." is an example of a numerical series. An alphanumeric series may combine both letters and numbers, such as "A1, B2, C3, D4, E5...". The pattern or rule followed by an alphanumeric series may be based on numerical or alphabetical order.

The given series V, Q, M, J, H, ... follows a pattern where each letter is the 6th letter from the previous letter. So, the next letter in the series would be 6 letters after H, which is N.

Therefore, the letter that comes next in the given alphanumeric series is "N".

To know more about the alphanumeric series visit:

brainly.com/question/10798102

#SPJ1

I will mark you brainiest!

In the regular decagon pictured, what is the length of QR?
A) 7
B) 9
C) 8

Answers

It’s 8 because the angles of each side and the lengths of each side are equal

Answer:

8

Step-by-step explanation:

Each side of the. decagon is equal so each side is 8

let v be a vector space. we know that v must contain a zero vector, 0v. (a) show that the zero vector is unique.

Answers

The given statement " let v be a vector space. we know that v must contain a zero vector, 0v and the zero vector is unique." is true and proved as an element in vector satisfies the define of zero vector i.e.,

0v + u  = u.

To show that the zero vector is unique, we need to prove that there can be only one element in the vector space that satisfies the definition of a zero vector, namely:

For any vector u in v, 0v + u = u + 0v = u.

To do this, suppose that there exist two distinct zero vectors, 0v and 0'v, such that 0v ≠ 0'v. Then, by the definition of a zero vector, we have:

0v + 0'v = 0'v + 0v = 0'v.

But, by the associative property of vector addition, we can also write:

0v + 0'v = (0v + u) + (-u + 0'v) = u + (-u) = 0v.

Similarly, we can write:

0'v + 0v = (0'v + u) + (-u + 0v) = u + (-u) = 0'v.

These equations show that 0v = 0'v, which contradicts our assumption that 0v ≠ 0'v. Therefore, the zero vector is unique, and there can be only one element in the vector space that satisfies the definition of a zero vector.

To know more about zero vector:

https://brainly.com/question/30967590

#SPJ4

if the volume of a cube is 125 cm what is its surface area

Answers

Answer:

150

Step-by-step explanation:

Using the formulas

A=6a2

V=a3

Solving forA

A=6V⅔=6·125⅔ ≈150

Answer:

Step-by-step explanation:

If the volume of a cube is 125 cm³, it means that each side of the cube measures 5 cm (since 5 x 5 x 5 = 125).

To find the surface area of the cube, we need to calculate the area of each of the six faces and add them together.

The area of each face is simply the length of one side squared (or side x side).

So, the surface area of the cube would be:

6 x (5 cm x 5 cm) = 6 x 25 = 150 cm²

Therefore, the surface area of the cube is 150 cm².

11. Find the missing dimension of the rhombus.
(Hint: Use the formula A = bh.) (Lesson 1)

Answers

Answer: The missing dimension of the rhombus in the given figure is Height of rhombus h  h=A/b=90/15= 6cm. so missing dimension is h=6cm

What is Dimension ?

In general, dimension refers to the measurement or size of an object, space, or quantity along a particular axis or direction. In mathematics, dimension refers to the number of coordinates needed to specify a point in a space.

What is Rhombus ?

A rhombus is a type of quadrilateral (a four-sided polygon) in which all four sides are of equal length. It is a special case of a parallelogram in which the opposite sides are parallel to each other, and its opposite angles are equal.

In the given question,

area of rhombus is A=b*h  so it can be rewritten as  h=A/b by substituting values given in question we get h= 6cm

To know more about Rhombus, visit:

https://brainly.com/question/27870968

#SPJ1

A country initially has a population of four million people and is increasing at a rate of 5% per year. If the country's annual food supply is initially adequate for eight million people and is increasing at a constant rate adequate for an additional 0.25 million people per year.

a. Based on these assumptions, in approximately what year will this country first experience shortages of food?

b. If the country doubled its initial food supply and maintained a constant rate of increase in the supply adequate for an additional 0.25 million people per year, would shortages still occur? In approximately which year?

c. If the country doubled the rate at which its food supply increases, in addition to doubling its initial food supply, would shortages still occur?

Answers

(a) The country will first experience shortages of food in approximately 26.6 years

(b) If the country doubled its initial food supply and maintained a constant rate of increase in the supply, shortages would still occur in approximately 38 years.

(c) If the country doubled the rate at which its food supply increases, in addition to doubling its initial food supply, shortages would still occur in approximately 55.4 years.

What year will the country experience shortage?

a. Let P(t) be the population of the country at time t (in years), and F(t) be the food supply of the country at time t.

We know that P(0) = 4 million, and P'(t) = 0.05P(t), which means that the population is increasing by 5% per year.

We also know that F(0) = 8 million, and F'(t) = 0.25 million, which means that the food supply is increasing by 0.25 million people per year.

When the food supply is just enough to feed the population, we have P(t) = F(t), so we can solve for t as follows:

4 million x (1 + 0.05)^t = 8 million + 0.25 million x t

[tex]4(1 + 0.05)^t = 8 + 0.25t\\\\t \approx 26.6 \ years[/tex]

b. If the country doubled its initial food supply, then F(0) = 16 million. We can use the same equation as before and solve for t:

4 million x  (1 + 0.05)^t = 16 million + 0.25 million x t

[tex]4(1 + 0.05)^t = 16 + 0.25t\\\\t \approx 38 \ years[/tex]

c. If the country doubled the rate at which its food supply increases and doubled its initial food supply, then we have F(0) = 16 million and F'(t) = 0.5 million. Using the same equation as before, we get:

4 million x  (1 + 0.05)^t = 32 million + 0.5 million x t

[tex]4(1 + 0.05)^t = 32 + 0.5t\\\\t \approx 55.4 \ years[/tex]

Learn more about rate of food supply here: https://brainly.com/question/30848751

#SPJ1

it looks as if the graphofr ~ tan 0, -'1r/2 < 0 < '1r/2, could be asymptotic to the lines x ~ i and x ~ -i. is it? give reasons for your answer.

Answers

No, the graph of tan 0, -1r/2 < 0 < 1r/2, is not asymptotic to the lines x = i and x = -i.

An asymptote is a line that a graph approaches but never crosses. The graph of tan 0, -1r/2 < 0 < 1r/2, has a period of π, meaning it repeats after every π, and will never cross the lines x = i and x = -i. This can be seen in the equation y = tan 0, where the x-values of -1r/2 and 1r/2 are replaced with the x-values of i and -i. The equation would be y = tan(i) and y = tan(-i), and the graphs of these equations would not be asymptotic to the lines x = i and x = -i.No, the graph of tan 0, -1r/2 < 0 < 1r/2, is not asymptotic to the lines x = i and x = -i.

Learn more about graph here:

https://brainly.com/question/29467965

#SPJ4

Debra is shopping for a king-size mattress. The mattress has a wholesale price of $359.00

Debra can go to a specialty store that she knows has the mattress. This specialty store marks up the wholesale price by 40%

. Ignoring tax, how much would Debra pay for the mattress at the specialty store?

Answers

Answer:

If the wholesale price of the king-size mattress is $359.00, and the specialty store marks up the price by 40%, the price Debra would pay at the specialty store is:

Wholesale price + Mark-up amount = Price at specialty store

$359.00 + 40% of $359.00 = $359.00 + $143.60 = $502.60

Therefore, Debra would pay $502.60 for the mattress at the specialty store.

Help me please.
Whoever answers right gets brainliest

Answers

The answer is the last one (y=x-5)

find the standard form of the equation of the ellipse having foci (2,0) and (2,6) and a major axis of length 8

Answers

The standard form of the equation of the ellipse is (x - 2)^2 / 4 + (y - 3)^2 / 7 = 1

To find the standard form of the equation of the ellipse, we first need to determine some of its properties.

The foci of the ellipse are given as (2, 0) and (2, 6). This tells us that the center of the ellipse is at the point (2, 3), which is the midpoint of the line segment connecting the foci.

The major axis of the ellipse is given as a length of 8. Since the major axis is the longest dimension of the ellipse, we can assume that the length of the major axis is 2a = 8, so a = 4.

Next, we need to determine the length of the minor axis. We know that the distance between the foci is 2c = 6, so c = 3. Since c is the distance from the center of the ellipse to each focus, we can use the Pythagorean theorem to find the length of the minor axis

b^2 = a^2 - c^2

b^2 = 4^2 - 3^2

b^2 = 7

b = sqrt(7)

Now we have all the information we need to write the standard form of the equation of the ellipse. The standard form is

(x - h)^2 / a^2 + (y - k)^2 / b^2 = 1

where (h, k) is the center of the ellipse. Plugging in the values we found, we get

(x - 2)^2 / 4 + (y - 3)^2 / 7 = 1

Learn more about ellipse here

brainly.com/question/29027368

#SPJ4

Write an equation in slope-intercept form for the line that passes through (3,-10) and (6,5).

Answers

Answer:

The slope of a line passing through two points (x1, y1) and (x2, y2) is given by the formula:

m = (y2 - y1) / (x2 - x1)

Substituting the values, we get:

m = (5 - (-10)) / (6 - 3) = 15/3 = 5

Now that we have the slope, we can use the point-slope form of a linear equation to write the equation of the line:

y - y1 = m(x - x1)

Substituting the values of m, x1, and y1, we get:

y - (-10) = 5(x - 3)

Simplifying and rearranging the equation, we get:

y + 10 = 5x - 15

y = 5x - 25

Therefore, the equation of the line passing through (3,-10) and (6,5) in slope-intercept form is y = 5x - 25.

Step-by-step explanation:

#trust me bro

Uniform Questions:
Australian sheepdogs have a relatively short life. The length of their life follows a uniform distribution between 8 and 14 years.
Questions:
What is the probability that a sheepdog will live at least 10 years?
What is the probability that a sheepdog will live no more than 11 years?
What is the probability that a sheepdog will live between 10 and 13 years?

Answers

Australian sheepdogs' life length follows a uniform distribution between 8 and 14 years.

a) The probability that a sheep dog will live at least 10 years, P( X ≥10) is equals to the 1/3

b) The probability that a sheepdog will live no more than 11 years, P( X ≤11) is equals to the 1/2.

c) The probability that a sheepdog will live between 10 and 13 years, P(10≤X≤13), is equals to the 1/2

In statistics, uniform distribution,is a distribution function where every possible result is equally likely, i.e., the probability of each event occurring is the equal. Here we have the length of Australian sheepdogs life follows a uniform distribution between 8 and 14 years. So, the probability distribution function, pdf for uniform distribution is f(x) = 1/(b - a), a<x<b , a= 8 , b = 14

=> f(x) = 1/(14 - 8) = 1/6

Area of uniform distribution= height × base and base = 14 - 8 = 6

height of uniform distribution is = 1/( Max - Min) = 1/6.

a) the probability that a sheepdog will live at least 10 years, P(X ≥10)= 1 - P(X< 10)

The cumulative distribution function in uniform distribution is P(X ≤ x) = (x − a)/(b − a) so, P( X < 10) = (10 - 8)/(14 - 8)

= 2/6 = 1/3

b) the probability that a sheepdog will live no more than 11 years, P( X ≤11)

= (11 - 8)/( 14 - 8)

= 3/6 = 1/2

c) In uniform distribution, P(c ≤ x ≤ d)

= (d-c)/(b- a)

The probability that a sheepdog will live between 10 and 13 years, P( 10≤X≤13), c = 10 , d = 13 , b = 14 , a = 8

=> [tex]P( 10≤X≤13) = \frac{d-c}{b- a} = \frac{13 - 10}{14 - 8} [/tex]

= 3/6 = 1/2

Hence required probability value is 1/2.

For more information about uniform distribution, visit :

https://brainly.com/question/28984186

#SPJ4

Complete question:

Uniform Questions:

Australian sheepdogs have a relatively short life. The length of their life follows a uniform distribution between 8 and 14 years. Questions:

a)What is the probability that a sheepdog will live at least 10 years?

b)What is the probability that a sheepdog will live no more than 11 years?

c)What is the probability that a sheepdog will live between 10 and 13 years?

In the diagram below, MN is parallel to JK. If MN=10,LK=7.2, JL=13.2, and LN=6.find the length of JK. Figures are not necessarily drawn to scale.

Answers

The length of JK is 18.333.

Since MN is parallel to JK, the angles formed by JLN and MLK are equal. Therefore, we can use the Triangle Proportionality Theorem, which states that if a line parallel to one side of a triangle divides the other two sides proportionally, then the triangles are similar.

Using the Triangle Proportionality Theorem, we can set up the following proportion:

[tex]$\frac{LK}{JL} = \frac{MN}{LN}$[/tex]

Therefore,

[tex]$\frac{7.2}{13.2} = \frac{10}{6}$[/tex]

We can cross-multiply to solve for JK:

[tex]$7.2 \cdot 6 = 13.2 \cdot 10$\\$43.2 = 132$\\$JK = \frac{132}{7.2} = 18.333$[/tex]

Therefore, the length of JK is 18.333.

Learn more about Triangle Proportionality Theorem here:

https://brainly.com/question/11807262

#SPJ1

What is the balance after 2 years on a CD with an initial investment of $1,800.00 and a 2.3% interest rate? A. $1,804.60 C. $1,882.80 B. $1,883.75 D. $4,140.00​

Answers

Step-by-step explanation:

The formula for calculating the balance on a CD (Certificate of Deposit) after a certain amount of time is:

A = P(1 + r/n)^(nt)

Where: A = the ending balance P = the principal (initial investment) r = the annual interest rate (as a decimal) n = the number of times interest is compounded per year t = the time in years

In this case, the initial investment is $1,800.00, the annual interest rate is 2.3% (or 0.023 as a decimal), and the investment period is 2 years. Assuming that the interest is compounded annually, we can substitute these values into the formula:

A = 1800(1 + 0.023/1)^(1*2) A = 1800(1.046729) A = 1883.12

Rounding to the nearest cent, the ending balance after 2 years on the CD is $1,883.75 (option B). Therefore, option B is the correct answer.

Which is the solution to the inequality?

One-fourth + x less-than StartFraction 5 over 6 EndFraction
x less-than StartFraction 7 over 12 EndFraction
x greater-than StartFraction 7 over 12 EndFraction
x less-than 1 and StartFraction 1 over 12 EndFraction
x greater-than 1 and StartFraction 1 over 12 EndFraction

Answers

To satisfy the inequality x less-than StartFraction 7 over 12 EndFraction.

What is an Inequality?

Inequalities are called as the mathematical expressions in which both sides are nonequal. Unlike to equations, we compare two values in inequality. Less than (or less than or equal to), greater than (or greater than or equal to), or not equal to signs can be used in place of the equal sign in between.

The inequality is 1/4 + x < 5/6 in order to solve this inequality we need to isolate the value of x, that is our variable of interest. This is shown bellow:

1/4 + x < 5/6

x < 5/6 - 1/4

LMC is used to subtract the fractions we have as follows:

x < (2*5 - 3*1)/12

x < (10 - 3)/12

x< 7/12

The inequality must be satisfied for x to be smaller than 7/12.

to know more about equation, visit:

https://brainly.com/question/10413253

#SPJ1

Answer:  x < 7/12

Step-by-step explanation:

If anyone could help that would be nice pls :)

Answers

Answer:

47 the answer is simply 47

Use the parabola tool to graph the quadratic function f(x) = -√² +7.
Graph the parabola by first plotting its vertex and then plotting a second point on the parabola HELP ME PLEASEEE

Answers

Using the two points you have plotted, draw the parabola. It should look like a downward-facing curve opening at the vertex (0, 7).

What is parabola?

A parabola is a symmetrical, U-shaped curve that is formed by the graph of a quadratic function.

Assuming you meant [tex]f(x) = -x^2 + 7[/tex], here's how you can graph the parabola using the parabola tool:

Find the vertex

The vertex of the parabola is located at the point (-b/2a, f(-b/2a)), where a is the coefficient of the [tex]x^2[/tex] term and b is the coefficient of the x term. In this case, a = -1 and b = 0, so the vertex is located at the point (0, 7).

Plot the vertex

Using the parabola tool, plot the vertex at the point (0, 7).

Plot a second point

To plot a second point, you can choose any x value and find the corresponding y value using the quadratic function. For example, if you choose x = 2, then [tex]f(2) = -2^2 + 7 = 3[/tex]. So the second point is located at (2, 3).

Therefore, Using the two points you have plotted, draw the parabola. It should look like a downward-facing curve opening at the vertex (0, 7).

To learn more about parabola from the given link:

https://brainly.com/question/21685473

#SPJ1

Complete Question:

Use the parabola tool to graph the quadratic function.

f(x) = -√² +7

Graph the parabola by first plotting its vertex and then plotting a second point on the parabola.

Complete the recursive formula of the geometric sequence 10, 6, 3.6, 2.16, ....
a(1) = a(n) = a(n − 1).​

Answers

The common ratio (r) of this geometric sequence is found by dividing any term by its preceding term, such as:

r = a2/a1 = 6/10 = 0.6

We can use this common ratio to find any term in the sequence using the recursive formula:

a(n) = r * a(n-1)

where a(1) is the first term in the sequence, a(n) is the nth term, and a(n-1) is the (n-1)th term

Using this formula, we can find any term in the sequence. For example:

a(2) = r * a(1) = 0.6 * 10 = 6

a(3) = r * a(2) = 0.6 * 6 = 3.6

a(4) = r * a(3) = 0.6 * 3.6 = 2.16

and so on

Therefore, the complete recursive formula for this geometric sequence is:

a(n) = 0.6 * a(n-1), where a(1) = 10 and a(n) = a(n-1) for all n > 1

Rachel bought a framed piece of artwork as a souvenir from her trip to Disney World. Diagnosed with the frame is 25 inches the length of the frame is 17 inches greater than its width. Find the dimensions as a frame

Answers

The dimensions of the rectangular frame is found as : 12 and 6 inches.

Explain about the Pythagorean theorem?

When a triangle is just a right triangle, the hypotenuse square is equal to the sum of the squares of the triangle's legs.

That's a picture frame, therefore pay attention that it must be rectangular.

Hence, the triangle is really a right triangle, and the Pythagorean theorem will eventually be applied.

You are aware that the square of the hypotenuse is 20 and equals 400.

hence, a²  + b²  = 400 and...

So because length is 4 times more than the breadth, a = b + 4.

This can be resolved if "b + 4" is substituted for "a":

(b + 4)² + b²  = 400,

(b + 4)(b + 4) + b²  = 400,

b² + 8b + 16 + b²  = 400,

2b² + 8b = 384

Further solving;

b² + 4b = 192

b² + 4b - 192 = 0

(b + 16)(b - 12) = 0

Due to the fact that a length cannot be negative, b must therefore be between b - 16 or 12 (negative value not taken)

The second leg is 12 + 4 = 6.

Thus,  the dimensions of the rectangular  frame is found as : 12 and 6 inches.

Know more about the Pythagorean theorem

https://brainly.com/question/343682

#SPJ1

A triangular prism has height 20 cm.
Its triangular face has base 7 cm and height 10 cm.
A. what is the volume of the prism?
B. suppose you triple the height of the prism.what happen to the volume?
C. suppose you triple the base of the triangular face.what happen to the volume?
D. suppose you triple the height of the triangular face.what happen to the volume?
E. suppose you triple all 3 dimensions.what happen to the volume?

Answers

Answer:

A. The volume of the triangular prism can be calculated using the formula V = (1/2)bh × h, where b is the base of the triangular face and h is the height of the prism. Thus, V = (1/2)(7 cm)(10 cm) × 20 cm = 700 cubic centimeters.

B. If the height of the prism is tripled to 60 cm, then the new volume would be V' = (1/2)(7 cm)(10 cm) × 60 cm = 2100 cubic centimeters. Thus, the volume is tripled.

C. If the base of the triangular face is tripled to 21 cm, then the new volume would be V' = (1/2)(21 cm)(10 cm) × 20 cm = 2100 cubic centimeters. Thus, the volume is tripled.

D. If the height of the triangular face is tripled to 30 cm, then the new volume would be V' = (1/2)(7 cm)(30 cm) × 20 cm = 2100 cubic centimeters. Thus, the volume is tripled.

E. If all three dimensions (base, height of triangular face, and height of prism) are tripled, then the new volume would be V' = (1/2)(21 cm)(30 cm) × 60 cm = 18900 cubic centimeters. Thus, the volume is multiplied by a factor of 27.

Other Questions
What is the wavelength (in meters) of a .44 magnum bullet (20.0 grams) travelling at at 450.0 m 5-1? Remember that 1 Joule = 1 kg m? s? 1) 9.94 x 10-24 m 2) 1.49 x 10-29 m 3) 7.36 x 10-95 m O4) 1.36 x 104 m 5), 7.36 x 10-38 m a 1-kg ball is thrown at 10 m/s straight upward. neglecting air resistance, the net force that acts on the stone when it is halfway to the top of its path is about what volume of 0.0100 m mno4 - is needed to titrate a solution containing 0.355 g of sodium oxalate? NEED HELP PLEASE HELP international firms typically face more challenges than domestic firms when it comes to the issue of international trade. challenges international firms may face include which of the following? select all that apply. group of answer choices natural resource differences economic differences political differences legal differences sociocultural differences in north america, which of the following frequently consumed items is most likely to be supplied by a trans-national corporation?a. Milkb. Waterc. Coffeed. Electricity The auditor considers the materiality and the importance of the portion of the consolidated financial statements audited by other auditors when determining whether they qualify to serve as the _____ auditor on the engagement Under the "Parol Evidence Rule", testimony regarding which of the following would be allowed if it contradicts or varies the terms of the contract?A. Negotiations occurring prior to contract formation.B. Oral agreements contemporaneous with contract formation.C. When the terms of the contract are ambiguous and require interpretationD. Agreements prior to contract formation. The two most important classes of pigments in chloroplasts are chlorophylls and ______. which layer of a blood vessel contains smooth muscle and elastic fibers? Move the corresponding statements about the corporate diversification components to the correct position in the list. Unrelated Diversification Diversification most often tied to good performance BCG Growth-Share Matrix A tool used in corporate portfolio planning Related Diversification Tata is a conglomerate successfully using this Restructuring Restructuring Process of reorganizing activities to refocus a firm Which phrase best describes a population?the number of individuals of a species in an areaall types of organisms living in an areaall biotic and abiotic factors in an areathe number of animal species in an area how much work must you do to push a 10kg block of steel across a steel table at a steady sped of 1 m/s When scientists discovered that atoms are composed of smaller particles, why didnt they reject atomic theory? How many moles of carbon monoxide would be needed to react with 100 g FeO3? Mrs Smith walks a half a mile a day after work. She works five days a week. How many yards will she have walked for the week by Friday morning? 1) Adam wants to buy a home priced at $215,000. The bank requires him to make a 5% down payment andhe will finance the rest for 30 years at 4.5% interest. He has to also pay the closing costs below. Find thea) the down payment b) the amount of the mortgage c) the closing costs d) the amount financed withclosing costs e) the monthly payment f) the total amount repaid g) the amount paid to interest.Application FeeBorrower's Credit checkPointsAppraisal FeeTitle SearchTitle InsuranceAttorney FeeDocumentation stampProcessing fee$ 25651.5% of Mortgage3502154504000.30% of Mortgage1.25% of Mortgage citation chaining is a process for finding more articles that may be relevant for your research topic. which of these would be a good starting point for this process? Conclude Is the element silicon likely to form ionic or covalent bonds? Explain. you are computing a confidence interval for the difference in 2 population proportions. which of the following could be negative? select all.OP1Op 1 - 2Standard errorCritical valueLower bound of the confidence intervalUpper bound of the confidence interval