The strength or intensity of the magnetic field at a given place in space is referred to as its magnitude.
It is measured in teslas (T) or gauss (G) units, depending on the measuring technique employed. Because the magnetic field is a vector quantity, it possesses both magnitude and direction.
The size of the magnetic field is governed by several parameters, including the current or magnetic charge that generates the field, the distance from the source of the field, and the field's direction with regard to the measuring device.
Magnetic field magnitude can be determined using mathematical methods that account for these parameters, such as the Biot-Savart law or Ampere's law.
Learn more about the magnitude and magnetic field at
https://brainly.com/question/29217777
#SPJ4
Dev is trying to figure out what kind of career he wants. He knows that he does not want to be stuck behind a desk. He has always been a bit of a foodie and loves to entertain his friends with delicious dishes. Based on this information, which would be the BEST thing for him to major in at college? A. Physics B. Education C. Hospitality D. Criminal justice
Based on the information provided, the BEST major for Dev to pursue would be Hospitality.
What is force?Force is a physical quantity that describes the interaction between two objects or systems. It is a vector quantity, which means that it has both magnitude and direction. Force can cause an object to accelerate, change direction, or deform. Force is typically measured in units of Newtons (N) in the International System of Units (SI). One Newton is defined as the force required to accelerate a mass of one kilogram at a rate of one meter per second squared. In other systems of measurement, such as the British system, force may be measured in units such as pounds or ounces. Some common examples of forces include gravity, friction, electromagnetic forces, and applied forces such as pushing or pulling. Understanding the concept of force is important in many areas of physics, engineering, and other sciences, as it helps explain how objects interact with each other and how they move and change over time.
Here,
This major would allow him to explore his passion for food and entertaining while also providing opportunities for hands-on experience and creativity. A degree in Hospitality can lead to careers in the food and beverage industry, hotel management, event planning, and more, all of which would offer the chance to work in dynamic, interactive environments rather than being stuck behind a desk all day.
To know more about force,
https://brainly.com/question/29044739
#SPJ1
Rank the types of radiation in order of their energy, from least to greatest.
left to right on spectrum
less wavelength/ greatest energy
purple (gama rays)
blue (X-rays)
blue/green (ultraviolet)
rainbow (visible light)
yellow (infrared)
orange (mircrowave)
red (FM-Radio-AM)
longest wave length/ lower energy
least energy
Radio waves
infrared
red visible light
blue visible light
X-rays
gamma rays
Most energy
A source can emit energy in the form of electromagnetic waves or particles, which are referred to as radiations. They come in a variety of forms, including cosmic radiation, X-rays, ultraviolet rays, microwaves, radio waves, alpha, beta, and gamma particles, and can be either man-made or natural.
Ranking the types of radiation in order of their energy:
left to right on spectrum
less wavelength/ greatest energy
purple (gamma rays)
blue (X-rays)
blue/green (ultraviolet)
rainbow (visible light)
yellow (infrared)
orange (microwave)
red (FM-Radio-AM)
longest wavelength/ lower energy
least energy
Radio waves
infrared
red visible light
blue visible light
X-rays
gamma rays
What are radiations?
On living things, these radiations can have both advantageous and detrimental consequences. For instance, the sun's UV rays are necessary for humans to produce vitamin D, but too much exposure can result in skin cancer. Ionizing radiation, on the other hand, can alter DNA, which can result in cancer or genetic flaws. Therefore, the study of radiation is crucial for many industries, such as nuclear energy, astronomy, and medicine.
To know more about radiation, check out:
brainly.com/question/29656100
#SPJ1
Suppose you have two metal cubes, one made of iron and one made of aluminum. You transfer the same amount of heat Q to each of them. Which cube will have the higher final temperature, given they have the same masses and initial temperatures?
a. Iron Cube
b. Aluminum Cube
The iron cube will have the higher final temperature if both cubes have the same mass and are initially at the same temperature.
What are the characteristics of iron?
1. Iron is a malleable and ductile metal, meaning it can be bent and shaped without breaking.
2. It has a high melting point, making it useful in a variety of applications.
3. Iron is relatively abundant and inexpensive, making it an ideal material for a variety of construction and manufacturing uses.
4. Iron is highly reactive and can corrode easily, so it must be protected with a coating or alloying elements like chromium or nickel to prevent rusting.
5. Iron is a strong and durable metal, making it ideal for structural applications.
The equation for the final temperature is, Delta*T = Q/(c.m) The specific heat, c of aluminum is greater than that of iron. Iron has a higher heat capacity than aluminum, which means that it takes more heat to raise the temperature of a given mass of iron by a certain amount compared to aluminum. When the same amount of heat Q is transferred to both the iron and aluminum cubes, the iron cube will absorb more heat due to its higher heat capacity, resulting in a higher final temperature for the iron cube.
Therefore, iron cube is the correct answer.
To learn more about iron from the link
https://brainly.com/question/14964747
#SPJ4
find the current that flows through a circuit that has a voltage of 500 decivolts nd a resistance of 28ohms
The current that will flow through the circuit will be 1.7857 amps
Current, voltage and Resistance relationshipOhm's Law describes the relationship between current, voltage, and resistance. This asserts that, given the temperature is constant, the current flowing in a circuit is directly proportional to the applied voltage and inversely proportional to the circuit resistance.
Given Data
Voltage = 500 decivolts
Resistance = 28ohm
Converting decivolts to volts we have
We can get this byn dividing the value by 10
Voltage = 500/10 = 50Volts
Now, we know that the expression relating current, voltage and resistance is given as
V = IR
Substituting our given data we have
50 = I*28
Divide both sides by 28 we have
I = 50/28
I = 1.7857 amps
Learn more about Ohms law here:
https://brainly.com/question/14296509
#SPJ1
what is ap physics equation sheet?
The AP Physics Equation Sheet is a resource provided by the College Board, which administers the Advanced Placement (AP) program in the United States. The AP Physics exams cover a range of topics in physics, including mechanics, electricity and magnetism, and thermodynamics, among others.
The essential equations and formulae that students could utilise on the test are included on the equation page. It is meant to aid in exam preparation and make sure that students have access to the relevant equations.
The equation sheet contains formulae for many different physical quantities, including, but not limited to, force, energy, power, velocity, acceleration, and electric charge. Formulas for specific subjects are also included, including those for Newton's equations of motion, work and energy, momentum and collisions, and electric circuits.
During the exam, students are permitted to utilise the AP Physics Equation Sheet, but it is assumed that they are already familiar with the equations and know how to use them to answer questions.
The equation sheet is not a replacement for a thorough comprehension of the fundamental ideas and tenets of physics.
For such more questions on ap physics sheet:
brainly.com/question/30639507
#SPJ4
the pressure indicated by the question mark is the __________.
The pressure indicated by the question mark is systolic pressure. option a is correct.
Systolic blood pressure is the highest pressure exerted on arterial walls when the heart contracts to pump blood through the circulatory system. With each beat, the heart first contracts, pushing blood from the left ventricle into the aorta, increasing pressure in the artery.
For example, if your blood pressure is 120/80 mmHg, your systolic blood pressure is 120 mmHg. Systolic blood pressure varies with factors such as age, physical activity, stress, and general health. High systolic blood pressure over time can damage blood vessels and increase the risk of heart disease, stroke, and other health problems.
Question: The Pressure Indicated By The Question Mark Is The ___. Systolic Pressure Mean Arterial Pressure Pulse Pressure Diastolic
and image atteched.
know more about systolic pressure click here;
https://brainly.com/question/30653986
#SPJ4
Pls help
2. What is the pressure of a gas that exerts a 200 N force over an area of 50 square meters?
The pressure of the gas is 40 N/m².
What is the pressure of a gas?The pressure of a gas is defined as the amount of force exerted by the gas molecules per unit area.
Here,
The force exerted by the gas = 200 N
The area under which the force is exerted = 50 m²
Therefore,
Pressure of the gas = Force exerted/ Area
P = F/A
P = 200/50
P = 40 N/m²
Hence,
The pressure of the gas that exerts 200N force over an area of 50 m² is 40 N/m².
To learn more about Pressure of gases, click:
https://brainly.com/question/12242531
#SPJ1
What is the difference between centrifugal force and centripetal force aviation?
Centrifugal force is the fictitious force perceived during a circular motion, while centripetal force is the force imposed on the body.
A fictitious force that moves in a circle and is directed away from the centre of the circle is called centrifugal force. When measurements are taken in an inertial frame of reference, the force does not exist. It only becomes relevant when we go from a ground/inertial reference frame to a spinning reference frame.
The component of force applied on an object in curvilinear motion that is pointed in the direction of the axis of rotation or the centre of curvature is known as the centripetal force.
To know more about centripetal force, visit,
https://brainly.com/question/20905151
#SPJ4
How do you find the current position of planets in a birth chart?
Answer:
Explanation:
Gather information on the exact place and time of your birth.
Choose a Western birth chart calculator for the simplest approach.
Try a Eastern sidereal calculator for a deeper dive into planetary cycles.
Enter your time and place of birth into the calculator.
Study what each planet means.
Atoms of an element having same atomic number but different mass numbers are called _______________.A. isoatomsB. isobarsC. isotopesD. isotones
Atoms of the same element with the same atomic number but different masses are called isotopes.
Isotopes are different nuclear types of the same element. Although they have the same atomic number and position on the periodic table, they have different numbers of neutrons in the nucleus, resulting in different numbers of nucleons. Almost identical protons, but different neutrons, make up an isotope. These atoms have almost identical chemical properties, but different masses, and therefore different physical characteristics. Varying isotopes of an element have the same number of protons in the nucleus, giving them the identical atomic number, but different numbers of neutrons, giving each element isotope a different atomic weight.
Learn more about Isotopes
brainly.com/question/13662697
#SPJ4
The atoms of an element having the same atomic number but different mass numbers are called isotopes. Therefore, the answer is C. isotopes.
Isotopes are atoms of the same element with the same number of protons in their nuclei but with different numbers of neutrons, resulting in different mass numbers. This means that isotopes of an element have identical chemical properties but slightly different physical properties due to differences in their atomic masses. Isotopes can be stable or unstable, with unstable isotopes decaying over time through processes such as radioactive decay. Isotopes have numerous practical applications in fields such as medicine, industry, and geology, including uses in radiometric dating, nuclear power, and medical imaging.
Learn more about atoms here: brainly.com/question/13654549
#SPJ4
the distance from one trough to another trough is called a
A wave's wavelength is the separation between its two troughs.
The distance between two successive phases of a wave, such as two peaks or two troughs, is known as the wavelength of the wave. All waves, including sound waves, electromagnetic waves, and water waves, have this essential characteristic. The speed at which the wave propagates influences the relationship between the wavelength and the wave's frequency. The wavelength of a wave decreases as its frequency increases and vice versa. The wave equation, which controls how waves behave in various mediums, describes this connection. From communications and imaging to quantum physics and astronomy, the idea of wavelength is fundamental to many fields of science and technology.
Learn more about wavelength here:
https://brainly.com/question/4112024
#SPJ4
wood pellets are produced from the waste sawdust of lumber and paper mills. home-heating stoves burning these pellets can heat homes directly, instead of relying on other energy sources. heating your home with wood pellets is:_________
Heating your home with wood pellets is option (a) sustainable, less polluting, and about 3 times as efficient as heating a home using electricity from a coal-fired power plant
Wood pellets are a renewable energy source, as they are made from waste sawdust that would otherwise be discarded. This makes them a sustainable option for home heating. Burning wood pellets also produces less pollution than burning fossil fuels, as wood is a carbon-neutral fuel. In comparison, electricity generated from coal-fired power plants is a significant contributor to air pollution and greenhouse gas emissions.
Moreover, wood pellets are about three times as efficient as heating a home using electricity from a coal-fired power plant. This is because wood pellets have a higher energy density than coal and are easier to transport and store. This increased efficiency means that heating with wood pellets can save homeowners money on their energy bills, as well as reduce their environmental impact.
Therefore, correct option is (a) sustainable, less polluting, and about 3 times as efficient as heating a home using electricity from a coal-fired power plant
Learn more about renewable energy source here
brainly.com/question/29440917
#SPJ4
The give question is incomplete, the complete question is:
Wood pellets are produced from the waste sawdust of lumber and paper mills. Home-heating stoves burning these pellets can heat homes directly, instead of relying on other energy sources. Heating your home with wood pellets is :
(a) sustainable, less polluting, and about 3 times as efficient as heating a home using electricity from a coal-fired power plant.
(b) sustainable, slightly more polluting, and is about 30% more efficient than using electricity from a coal-fired power plant.
(c) not sustainable but is less polluting and is about as efficient as using electricity from a coal-fired power plant.
(d) not sustainable and actually pollutes more than using electricity from a coal-fired power plant
A frictionless curve of radius 100 m, banked at an angle of 45 degrees, may be safely negotiated at a speed of m/s Mark for Review
Answer:
31 meter per second
Explanation:
Now r is the radius which is 100 meters. G is 9.8 and theta is equal to 45 degrees. From this, we get the speed equal to 31 meter per second. This is the required speed, and this completes the solution
A small block has constant acceleration as it slides down a frictionless incline. The block is released from rest at the top of the incline, and its speed after it has traveled 7. 80 m to the bottom of the incline is 3. 80 m/s.
The speed of the block at the bottom of the incline is 5.06 m/s.The problem involves a small block sliding down a frictionless incline with constant acceleration.
The block is released from rest at the top of the incline, and we are given that the speed of the block after it has traveled 7.80 m to the bottom of the incline is 3.80 m/s. To solve the problem, we can use the equations of motion for constant acceleration, which relate the final velocity (v), initial velocity (u), acceleration (a), distance (s) and time (t) as follows:
v^2 = u^2 + 2as
v = u + at
s = ut + 1/2at^2
Since the incline is frictionless, the only force acting on the block is its weight, mg, where m is the mass of the block and g is the acceleration due to gravity.
Let θ be the angle of the incline, then the component of the weight parallel to the incline is mgsinθ, and the component perpendicular to the incline is mgcosθ. The acceleration of the block down the incline is, therefore, a = gsinθ.
We can now use the given information to solve for the acceleration of the block down the incline. From the second equation of motion, we have:
v = u + at
Since the block is released from rest, the initial velocity u is zero, and we can write:
v = at
Substituting the given values of v = 3.80 m/s and s = 7.80 m, we get:
3.80 m/s = a × 7.80 m
Solving for a, we get:
a = 0.487 m/s^2
Now that we know the acceleration of the block down the incline, we can use the first equation of motion to find the speed of the block at the bottom of the incline:
v^2 = u^2 + 2as
Since the block is released from rest, the initial velocity u is zero, and we can write:
v^2 = 2as
Substituting the known values of v = 3.80 m/s, s = 7.80 m, and a = 0.487 m/s^2, we get:
(3.80 m/s)^2 = 2 × 0.487 m/s^2 × 7.80 m
Simplifying, we get:
v = 5.06 m/s
To learn more about acceleration, visit here
https://brainly.com/question/12550364
#SPJ4
the specific heat of copper is 0.385 j/g °c. how much thermal energy is required to increase the temperature of a 20g sample of copper from 20°c to 50°c?
The amount of thermal energy required to increase the temperature of a 20g sample of copper from 20°C to 50°C is 231 J.
What is thermal energy?The entire quantity of kinetic energy found in the particles of an object or material is referred to as thermal energy. It is a type of energy connected to atomic and molecular motion within a substance. Conduction, convection, and radiation are a few examples of mechanisms that can be used to transmit this energy from one item to another. An object's thermal energy content is inversely related to its temperature, with higher temperatures denoting a higher thermal energy content. Through the transformation of heat energy into mechanical energy, thermal energy is employed in a variety of processes, including heating houses, preparing food, and creating electricity.
The amount of thermal energy required to increase the temperature of a substance can be calculated using the following formula:
Q = m x c x ΔT
Where:
Q = amount of thermal energy in Joules (J)
m = mass of the substance in grams (g)
c = specific heat capacity of the substance in J/g°C
ΔT = change in temperature in °C (final temperature - initial temperature)
Using the values given in the problem, we can calculate the amount of thermal energy required to increase the temperature of a 20g sample of copper from 20°C to 50°C:
Q = 20g x 0.385 J/g°C x (50°C - 20°C)
Q = 20g x 0.385 J/g°C x 30°C
Q = 231 J
To know more about thermal energy, check out:
https://brainly.com/question/7541718
#SPJ4
The amount of thermal energy required to increase the temperature of a substance can be calculated using the following formula:
Q = m x c x ΔT
Where:
Q = amount of thermal energy in Joules (J)
m = mass of the substance in grams (g)
c = specific heat capacity of the substance in J/g°C
ΔT = change in temperature in °C (final temperature - initial temperature)
Using the values given in the problem, we can calculate the amount of thermal energy required to increase the temperature of a 20g sample of copper from 20°C to 50°C:
Q = 20g x 0.385 J/g°C x (50°C - 20°C)
Q = 20g x 0.385 J/g°C x 30°C
Q = 231 J
Therefore, the amount of thermal energy required to increase the temperature of a 20g sample of copper from 20°C to 50°C is 231 J.
what is whether or not each type of glassware can be heated?
Whether or not each type of glassware can be heated depends on the specific type of glassware and the method of heating.
What is method of heating?The method of heating refers to the various ways in which heat energy can be transferred to an object or substance to raise its temperature. Some common methods of heating include:
Conduction: This involves transferring heat through direct contact between two objects or substances. For example, heating a pan on a stove by placing it directly on the burner.Convection: This involves transferring heat through the movement of fluids, such as air or water. For example, a forced-air heating system that circulates warm air through a building.Radiation: This involves transferring heat through electromagnetic waves, such as infrared radiation. For example, the sun heating the earth through radiation.Induction: This involves transferring heat through an electromagnetic field, which induces an electric current and produces heat. For example, an induction cooktop that heats a pot through an electromagnetic field.Whether or not each type of glassware can be heated depends on the specific type of glassware and the method of heating. Some types of glassware, such as borosilicate glass, are designed to withstand high temperatures and are commonly used for heating applications, while other types of glassware may be more susceptible to cracking or breaking when exposed to heat.
Glassware that is designed for heating applications will be labeled as such and will typically have a higher temperature tolerance than glassware that is not intended for heating. Some common types of glassware that are designed for heating include Pyrex, Kimax and Vycor glass.
To know more about Method of heating, visit:
https://brainly.com/question/2341645
#SPJ4
where did constellations come from
In astronomy, a constellation is any of a specific collection of stars that, at least in the minds of people who named them, were thought to resemble recognizable figures or creatures in the sky.
Constellations are groupings of stars that have been identified and named by humans. The practice of identifying constellations dates back to ancient civilizations, such as the Babylonians, Greeks, and Romans.
These civilizations used constellations as a way to tell stories, track the seasons, and navigate. Each civilization had their own names and stories for the constellations, but many of the names and stories we use today come from the ancient Greeks.
For example, the constellation Orion is named after a hunter in Greek mythology, and the constellation Leo is named after the lion that was killed by the Greek hero Hercules. Overall, constellations are a human creation that have been used for various purposes throughout history.
To know more about constellation here:
https://brainly.com/question/18312623#
#SPJ11
a wave pulse travels along horizontal string. as the pulse passes a point on the string. the point moves vertically up and then back down again. how does the vertical speed of the point compare to the speed of the wave?
A wave pulse travels along the horizontal string. As the pulse enacts a point on the string. The point moves vertically up and then back down again. The speeds could not be uniquely corresponded, because there is no fixed relationship between them.
A simple type of wave called a pulse is produced. The pulse pushes down the string and so everyplace the pulse goes that part of the string attains kinetic and elastic energy. In general, a wave is characterized as a disruption in a medium that transports both energy and momentum. Wave interference is the consequence of the interactions of multiple waves. Wave interference usually provokes wave beats. A wave pulse is a quick, non periodic, wave created by a single input of energy instead than a continuous or recounted input of energy.
To learn more about wave pulse visit here:
https://brainly.com/question/14885673
#SPJ4
The two most obvious physical changes seen in early childhood include a growth in height and an increase in........
During early childhood, which is the period between the ages of two and six years, children undergo significant physical changes in terms of their height and weight.
What do they experience in their height and weight ?This growth in height is primarily due to the growth and development of the long bones in the body, which lengthen as new bone tissue is added at the growth plates located at the ends of the bones. Growth hormone, which is produced by the pituitary gland, plays a crucial role in this process by stimulating the growth of bone and muscle tissue.This increase in weight is primarily due to the growth and development of muscle and fat tissue, which are necessary for energy storage, metabolism, and physical activity. Adequate nutrition is essential for this process, and young children require a diet that is rich in nutrients such as protein, carbohydrates, and fats to support their growth and development.Overall, these changes in height and weight during early childhood are important milestones in a child's physical development, and they provide a foundation for their future growth and well-being.To know more about height and weight , check out :
https://brainly.com/question/1419462
#SPJ4
Which is a good description of kinetic energy?
Answer:
Kinetic energy is the energy of an object or a system's particles in motion. It is defined as the work needed to accelerate a body of a given mass from one velocity to another. Kinetic energy is the energy associated with motion, and can be calculated by multiplying half the mass of the object by the square of its velocity. Kinetic energy can be converted into other forms of energy, such as heat, sound, and light.
suppose you have two metal cubes, one made of iron and one made of aluminum. you transfer the same amount of heat q to each of them. which cube will have the higher final temperature, given they have the same masses and initial temperatures?
The ultimate temperature of the iron cube will be greater than that of the aluminium cube.
The amount of heat needed to increase a substance's temperature by one degree Celsius in one gramme, also known as specific heat.
Typically, calories or joules per gramme per degree Celsius are used as the units of specific heat.
In comparison to iron, aluminium has a specific heat capacity that is nearly three times higher.
As a result, to raise aluminum's temperature by the same amount as iron, three times as much heat is needed.
The temperature change of the aluminium cube will be three times smaller than that of the iron cube when the same amount of heat q is applied to each cube.
Consequently, the iron cube's ultimate temperature will be greater than the aluminium cube's.
For such more questions on Temperature
https://brainly.com/question/24746268
#SPJ4
if you are told that a 20 kilogram object is raised by 10 meters, you know that?a the force of gravity on the object is 20 kilograms. b the mass of the object is 20 kilograms. с the force of gravity on the object is 10 meters. d the mass of the object is 10 meters. e the acceleration of the object is 200 kilogram-meters
The correct answer is (b) the mass of the object is 20 kilograms. When an object is raised to a certain height, work is done on the object against the force of gravity, and the object gains potential energy.
When a 20 kilogram object is raised by 10 meters, it gains gravitational potential energy, which is given by the formula:
Potential energy = mgh
where m is the mass of the object, g is the acceleration due to gravity, and h is the height that the object is raised.
Substituting the given values, we get:
Potential energy = (20 kg) x (9.81 m/s^2) x (10 m) = 1962 J
This means that 1962 J of work was done on the object against the force of gravity to raise it to a height of 10 meters. The force of gravity on the object remains constant at 20 kg (mass) x 9.81 m/s^2 (acceleration due to gravity) = 196.2 N, regardless of its height.
Since the object is lifted vertically and is at rest at the top of its ascent, no work is done against horizontal forces. Therefore, the force of gravity on the object remains constant at 20 kg (mass) x 9.81 m/s^2 (acceleration due to gravity) = 196.2 N.
Thus, the correct statement is that the mass of the object is 20 kilograms.
Learn more about potential energy here:
https://brainly.com/question/24284560
#SPJ4
In a class of 30 students, 15 are taking math and 20 are taking physics. What is the probability that a randomly selected student is taking both math and physics?.
the student is taking both math and physics are 5.
n(A∪B)=n(A)+n(B)−n(A∩B)
30=15+20−n(A∩B)
n(A∩B) = 5
What is a probability simple definition?A probability is a number expressing the possibility or likelihood that a specific event will occur. Probabilities can be defined as proportions with a range of 0 to 1, or as percentages with a range of 0% to 100%.
Why do we study probability?Information about the possibility that something will happen is provided by probability. For instance, meteorologists utilize weather patterns to forecast the likelihood of rain. Probability theory is utilized in epidemiology to comprehend the connection between exposures and the risk of health outcomes.
Hence 5 is the correct answer.
Learn more about probability:
https://brainly.com/question/30034780
#SPJ4
The weight of an object is the product of its mass m and the acceleration of gravity.
The weight of object is the product of its mass, m, and the acceleration of gravity, g (where g=9.8 m/s2 ). Therefore, If an object’s mass is m=10 kg, its weight will be 98 Newton.
Mass is the amount of matter in a body or a substance. It is measured in kilograms and is measured using a beam balance. Mass of an object or a body remains constant everywhere that is, it does not change with the gravitational pull or with the body’s location.
Weight is the measure of the gravitational pull of gravity of an object. It is measured in Newton using a spring balance. It is direction is towards the center of the planet and is a vector quantity. Weight changes with location of a body or gravitational acceleration as it is dependent on gravity.
It changes depending on the amount of gravitational pull exerted by an object on a body, such that the more the gravity the heavier the object and the less gravity the lighter the object.
By multiplying the mass of a body by the gravitational acceleration we get the weight.
i.e., Weight = mass (M) x gravitation pull (g)
W = Mg
= 10 Kg x 9.8 N/m2
= 98 N
Therefore, A body with a mass of 10 Kg on a surface with a gravitational acceleration of 9.8 m/s2 will have a weight equivalent to 98 N .
To learn more about weight of the object,
brainly.com/question/23832929
#SP J4
The correct question is:
The weight of an object is the product of its mass, m , and the acceleration of gravity, g (where g=9.8 m/s 2 ). If an object’s mass is m=10. kg , what is its weight?
How much kinetic energy does a 75 kg cheetah have running after an antelope at 25.8 m/s?
(Show work please)
The kinetic energy of the cheetah will be 24961.5 J.
What is kinetic energy?An object's kinetic energy is the energy it has as a result of its motion. It is defined as the amount of work required to accelerate a body of a given mass from rest to a given velocity. The body retains its kinetic energy after gaining it during acceleration unless its speed changes.
Given that a 75 kg cheetah has running after an antelope at 25.8 m/s. The kinetic energy will be calculated as:-
KE = 1/2 mv²
KE = 1/2 x 75 x (25.8)²
KE = 24961.5 J
Therefore, the value of the kinetic energy will be 24961.5 J.
To know more about kinetic energy follow
https://brainly.com/question/25959744
#SPJ1
(II) The specific heat at constant volume of a particular gasis 0.182 kcal/kgâKkcal/kgâK at room temperature, and its molecularmass is 34 . (a) What is its specific heat at constant pressure?(b) What do you think is the molecular structure of this gas?
a) The specific heat at constant pressure of the gas is approximately 0.202 kcal/kg-K.
b) It is not possible to determine the molecular structure of a gas based on its specific heat alone.
What is Constant Pressure?Constant pressure refers to a condition in which the pressure of a system remains constant, regardless of changes in the volume or temperature of the system. In thermodynamics, constant pressure is often used as one of the conditions that can be imposed on a system in order to study the relationship between the pressure, volume, and temperature of the system.
In a constant pressure process, the pressure of the system remains the same, and changes in the volume of the system cause changes in the internal energy of the system. For example, in an ideal gas, if the pressure of the gas is kept constant, an increase in the volume of the gas will cause the temperature of the gas to decrease, and a decrease in the volume of the gas will cause the temperature of the gas to increase.
Constant pressure is an important concept in thermodynamics and is used in a variety of applications, including the design of engines and the analysis of energy systems.
a) The specific heat at constant pressure of a gas can be calculated using the equation:
Cp = Cv + R
where Cp is the specific heat at constant pressure, Cv is the specific heat at constant volume, and R is the specific gas constant. The value of R for one mole of gas is typically around 8.31 J/mol-K.
Given that the specific heat at constant volume is 0.182 kcal/kg-K and the molecular mass is 34, we can calculate the specific heat at constant pressure as follows:
Cp = Cv + R
Cp = 0.182 kcal/kg-K + (8.31 J/mol-K / 4184 J/kcal)
Cp = 0.182 + (8.31 / 4184)
Cp = 0.182 + 0.01976
Cp = 0.20176 kcal/kg-K
Therefore, the specific heat at constant pressure of the gas is approximately 0.202 kcal/kg-K.
b) It is not possible to determine the molecular structure of a gas based on its specific heat alone. The specific heat of a gas is a measure of the amount of heat required to raise the temperature of a unit mass of the gas by a certain amount, and it is influenced by the number of atoms in the gas, the type of bonds between the atoms, and the mass of the atoms. To determine the molecular structure of a gas, other methods such as spectroscopy or X-ray crystallography must be used.
To know more about Constant Pressure, visit:
https://brainly.com/question/2139620
#SPJ4
What is the difference between angular momentum and linear momentum?
Answer:
Linear momentum is of an object traveling in a straight line. Angular momentum is when the object is spinning.
Explanation:
A ball of mass 0.4 kg, initially at rest, is kicked directly toward a fence from a point 20 m away, as shown below. The velocity of the ball as it leaves the kicker’s foot is 17 m/s at an angle of 42 ◦ above the horizontal. The top of the fence is 5 m high. The ball hits nothing while in flight and air resistance is negligible. the acceleration due to gravity is 9.8 m/s
1. Determine the time it takes for the ball to reach the plane of the fence.
Answer in units of s.
2. How far above the top of fence will the ball
pass? Consider the diameter of the ball to be
negligible.
3. What is the vertical component of the velocity
when the ball reaches the plane of the fence?
Answer in units of m/s.
Time taken is 1.65s, height is 17.5m and velocity is 4.3 m/s.
1)
To determine the time it takes for the ball to reach the plane of the fence, we need to find the horizontal component of the initial velocity.
Using trigonometry, we can find that the horizontal component is v₀ cos(42°) = 17 m/s × cos(42°) ≈ 12.13 m/s. Then, we can use the equation for horizontal distance, d = vt, where d is the distance, v is the velocity, and t is time. Solving for t, we get t = d/v = 20 m / 12.13 m/s ≈ 1.65 s.2)
To find how far above the top of the fence the ball will pass, we need to find the maximum height it reaches.
We can use the kinematic equation for vertical displacement, Δy = v₀y t + (1/2)at², where v₀y is the initial vertical component of velocity and a is acceleration due to gravity. Since the ball is initially at rest vertically, v₀y = 0. Solving for Δy, we get Δy = (1/2)at² = (1/2)(9.8 m/s²)(1.65 s)² ≈ 12.5 m. Thus, the ball will pass 12.5 m + 5 m = 17.5 m above the ground.3) The vertical component of velocity when the ball reaches the plane of the fence can be found using the kinematic equation for vertical velocity, v = v₀y + at.
We know that a = -9.8 m/s² (since acceleration due to gravity is downward) and t = 1.65 s (from part 1). We also know that the initial vertical component of velocity is v₀ sin(42°) = 17 m/s × sin(42°) ≈ 11.4 m/s. Plugging in these values, we get v = 11.4 m/s + (-9.8 m/s²)(1.65 s) ≈ -4.3 m/s. The negative sign indicates that the ball is moving downward at this point.To know more about kinematics visit:
https://brainly.com/question/28918670
#SPJ1
A projectile is thrown from point P .it moves in such a way that it's distance from point P is always Increasing .find the maximum angle above horizontal with which is thrown .ignore air resistance
The maximum angle above the horizontal with which a projectile can be thrown can be found by considering the concept of range. The range of a projectile is the maximum horizontal distance it can cover before returning to the ground.
The range is maximum when the projectile is thrown at an angle of 45 degrees above the horizontal.
So, the maximum angle above the horizontal with which a projectile can be thrown is 45 degrees. It is worth noting that air resistance can affect the trajectory and the range of a projectile, but as per the problem statement, air resistance has been ignored.
To know more about Projectile:
https://brainly.com/question/28692427
#SPJ4
The Nernst represents balance between which two of the following? Permeability Flows due to potential differences Membrane current Flows due to concentration difference Resistance
The Nernst equation represents balance between the two flows due to concentration differences and flows due to potential differences across a cell membrane.
The Nernst equation describes the electrochemical equilibrium potential for an ion across a membrane. It takes into account the concentration gradient and the charge of the ion to calculate the membrane potential at which there would be no net movement of the ion across the membrane due to potential differences. This is the point at which the electrical forces and the chemical forces are equal and opposite, and there is no net flow of ions across the membrane.
The equation is commonly used in the study of ion channels and the resting membrane potential of neurons. It is also used to calculate the equilibrium potentials for different ions in order to determine the direction and magnitude of ion fluxes under different conditions.
The Nernst equation does not directly represent permeability, membrane current or resistance, but these concepts are related to the ion flows and concentration gradients that the equation describes. For example, changes in membrane permeability can alter the concentration gradient across the membrane and thus the Nernst potential for a given ion, while membrane current and resistance are influenced by the movement of ions across the membrane.
To know more about potential differences please refer: https://brainly.com/question/30544638
#SSPJ4