Answer:
True
Explanation:
The main differences between a physical property and a chemical property are mentioned below:
A physical property is a characteristic of a substance that can be observed or measured without changing the identity of the substance. Physical properties include color, density, hardness, and melting and boiling points.
While A chemical property describes the ability of a substance to undergo a specific chemical change.
2 What can you Infer about this source of electricity?
A It is a source of alternating current
B It Is a source of direct current
С It is a source of static electricity
D It is a source of electromagnetic radiatlon
Answer:i think it's d
Explanation:
A race car moves along a circular track at a speed of 0.512 m/s. If the car's centripetal acceleration is 15.4 m/s2, what is the distance between the car and the center of the track?
Answer:
The radius is [tex]r = 0.0170 \ m[/tex]
Explanation:
From the question we are told that
The speed at which the race car moves is [tex]v = 0.512 \ m/s[/tex]
The centripetal acceleration is [tex]a _r = 15.4 \ m/s[/tex]
Generally the centripetal acceleration is mathematically represented as
[tex]a_r = \frac{v^2 }{r}[/tex]
=> [tex]15.4 = \frac{0.512^2 }{ r}[/tex]
=> [tex]r = 0.0170 \ m[/tex]
Give a paragraph on how to become a better leader
Answer:
Anyone can sit in a corner office and delegate tasks, but there is more to effective leadership than that. Effective leaders have major impacts on not only the team members they manage, but also their company as a whole. Employees who work under great leaders tend to be happier, more productive and more connected to their organization – and this has a ripple effect that reaches your business's bottom line
Explanation:
:)
You have to travel 5000 meters. You only have two minutes (120 seconds) to get there. How fast must you travel to get there in time in meters per second?
Answer:
416.667 m/s
Explanation:
divide the distance by the time
Suppose a candle is burned in a closed system where matter cannot enter or leave. Given this situation,
what is equal to the mass of the original candle?
Answer:
Mass of the melted wax
Explanation:
The mass of the original candle that has been burnt in the closed system is equal to the mass of the melted wax.
A closed system is a system where matter cannot be exchange with the surrounding. As the candle undergoes a phase change during the burning, it melts to liquid wax. Since there is no loss of mass, the amount of matter in the system is conserved. Therefore, the mass of the molten wax will be the same as the mass of the candle originally melted.Use the drop-down menus to determine which state of matter is described in each statement.
The atoms in a
are closely packed, but able to slide past each other.
The atoms in a
spread as far apart as possible.
A
has a definite shape and volume.
The shape of a
can change, but the volume is definite.
Answer:
Explanation:
There are three states of matter; solid, liquid and gaseous states.
The solid state of matter has it's particles tightly packed with very restricted or no movement within the molecule hence the reason for it's definite shape.
The liquid state of matter has it's particles with a free movement (better than solid but not as free as gases) within the molecule hence it's particles are loosely packed within the molecule. Hence, they (liquids) assume the shape of the container in which they are stored and they move freely when released from the container.
The gaseous state of matter has it's particles totally loosely packed as a result of it's particles moving freely and colliding against one another.
Thus, we can use the above descriptions to answer the statements from the question.
1) The atoms in a ----- are closely packed, but able to slide past each other. Answer: From the description above, it can be deduced that the atoms here are in a solid because the particles within a solid are closely packed.
2) The atoms in a -------- spread as far apart as possible.
Answer: The atoms here are in gaseous form because, as described earlier, they are loosely packed and can thus be as far apart as possible.
3) A ----- has a definite shape and volume.
Answer: As described earlier, a solid substance would have a definite shape and volume because it's particles are tightly packed.
4) The shape of a ----- can change, but the volume is definite.
Answer: The substance here is a liquid because the particles are free (but not as free as gases) and would have a definite volume but will assume the shape of the any container they are placed in (hence they have an irregular shape).
Answer:
The atoms in a
✔ liquid
are closely packed, but able to slide past each other.
The atoms in a
✔ gas
spread as far apart as possible.
A
✔ solid
has a definite shape and volume.
The shape of a
✔ liquid
can change, but the volume is definite.
Explanation:
a truck of mass 200kg rests on an inclined plane hindered from rolling down the surface by a storing sprint whose force constant is 10^6N/M.neglecting friction,how much work does the truck do on the spring?
Answer:
1.92 J
Explanation:
From the question given above, the following data were obtained:
Mass (m) = 200 Kg
Spring constant (K) = 10⁶ N/m
Workdone =?
Next, we shall determine the force exerted on the spring. This can be obtained as follow:
Mass (m) = 200 Kg
Acceleration due to gravity (g) = 9.8 m/s²
Force (F) =?
F = m × g
F = 200 × 9.8
F = 1960 N
Next we shall determine the extent to which the spring stretches. This can be obtained as follow:
Spring constant (K) = 10⁶ N/m
Force (F) = 1960 N
Extention (e) =?
F = Ke
1960 = 10⁶ × e
Divide both side by 10⁶
e = 1960 / 10⁶
e = 0.00196 m
Finally, we shall determine energy (Workdone) on the spring as follow:
Spring constant (K) = 10⁶ N/m
Extention (e) = 0.00196 m
Energy (E) =?
E = ½Ke²
E = ½ × 10⁶ × (0.00196)²
E = 1.92 J
Therefore, the Workdone on the spring is 1.92 J
A book weighing 2 Newtons is at rest on a table. The net force on the book is zero.
TRUE
FALSE
Answer: I think its True
10 cm^3 of iron have a smaller
mass then 115 cm^3 of wood.
(density of iron 7.9 g/cm^3)
(density of wood 0.7 g/cm^3)
true or false
Explanation:
Mass of iron = (7.9)(10) = 79g
Mass of wood = (115)(0.7) = 80.5g
Therefore iron has a smaller mass than the wood, which is true.
your stopped at a red light. You've checked the intersection to see that it is clear of vehicles and pedestrians, unless a tells you not, you may then?
Answer:
Unless you are at a red light you may not proceedYou pose a threat to other drivers who are following the instructions and ethics.Fossils, plants, and animals are what make rocks different from minerals.
true of fales
I got a new kitten and I dont know how to train them to use a leash. Can anyone help?
Michael is biking on a trail and is accelerating at a rate of 1.2 m/s/s for 15 seconds. He began this part of his ride with a velocity of 1.62 m/s. Determine Michael's final velocity?
Answer:
Michael's final velocity is 19.62 m/s.
Explanation:
We can find the final velocity of Michael by using the following kinematic equation:
[tex] v_{f} = v_{0} + at [/tex] (1)
Where:
[tex]v_{f}[/tex]: is the final velocity =?
[tex]v_{0}[/tex]: is the initial velocity = 1.62 m/s
a: is the acceleration = 1.2 m/s²
t: is the time = 15 s
By entering the above values into equation (1) we have:
[tex] v_{f} = 1.62 m/s + 1.2 m/s^{2}*15 s [/tex]
[tex] v_{f} = 19.62 m/s [/tex]
Therefore, Michael's final velocity is 19.62 m/s.
I hope it helps you!
An object located near the surface of Earth has a weight of a 245 N
object?
• What is the mass of the object?
• What is the weight of the object on Mars where the gravity is
3.72 m/s?
Answer:
The mass of the object is 24.5 kg and weight of the object on Mars is 91.14 N.
Explanation:
Weight of the object on the surface of Earth, W = 245 N
On the surface of Earth, acceleration due to gravity, g = 10 m/s²
Weight of an object is given by :
W = mg
m is mass
[tex]m=\dfrac{W}{g}\\\\m=\dfrac{245\ N}{10\ m/s^2}\\\\=24.5\ kg[/tex]
So, the mass of the object is 24.5 kg
Acceleration due to gravity on Mars, g' = 3.72 m/s²
Weight of the object on Mars,
W' =mg'
W' = 24.5 kg × 3.72 m/s²
= 91.14 N
So, the weight of the object on Mars is 91.14 N.
Given the data in the question;
Weight of object; [tex]W = 245N[/tex]
What is the mass of the object.Weight the measure of the force of gravity pulling down on a particle or object.
It is expressed as:
[tex]W = m* g[/tex]
Where m is mass of the object and g is acceleration due to gravity { Acceleration due gravity of Earth [tex]g_{earth} = 9.8m/s^2[/tex] }
We substitute our values into the equation
[tex]245N = m * 9.8m/s^2\\\\245kg.m/s^2 = m * 9.8m/s^2\\\\m = \frac{245kg.m/s^2}{9.8m/s^2} \\\\m = 25kg[/tex]
Therefore, mass of the object located near the Earth surface is 25kg
Weight of the object on Mars where the gravity [tex]3.72m/s^2[/tex]
So on planet Mars; [tex]g = 3.72m/s^2[/tex], we know that mass of the object is [tex]25kg[/tex]
We substitute into our equation
[tex]W = m* g[/tex]
[tex]W = 25kg * 3.72m/s^2\\\\W = 93kg.m/s^2\\\\W = 93N[/tex]
Therefore, the weight of the object on Mars with the given gravity is 93 Newtons.
Learn more: https://brainly.com/question/23245710
An 800 kHz radio signal is detected at a point 3.2 km distant from a transmitter tower. The electric field amplitude of the signal at that point is 320 mV/m. Assume that the signal power is radiated uniformly in all directions and that radio waves incident upon the ground are completely absorbed. The magnetic field amplitude of the signal at that point, in nT, is closest to:
Answer:
1.07 nT
Explanation:
We know that E/B = c where E = electric field amplitude = 320 mV/m = 0.32 V/m, B = magnetic field amplitude and c = speed of light = 3 × 10⁸ m/s.
So, B = E/c
Substituting E and c into B, we have
B = E/c
= 0.32 V/m ÷ 3 × 10⁸ m/s
= 0.1067 × 10⁻⁸ T
= 1.067 × 10⁻⁹ T
= 1.067 nT
≅ 1.07 nT
A star's brightness as if it were a standard distance from Earth (10 parsecs) is known as what? radiation apparent brightness lighting absolute brightness
Answer:
In contrast, the intrinsic brightness of an astronomical object, does not depend on the distance of the observer or any extinction. The absolute magnitude M, of a star or astronomical object is defined as the apparent magnitude it would have as seen from a distance of 10 parsecs (33 ly).
Explanation:
A horizontal disc of radius 45 cm rotates about a vertical axis through its centre. The disc makes one full
revolution in 1.40 s. A particle of mass 0.054 kg is placed at a distance of 22 cm from the centre of the disc.
The particle does not move relative to the disc.
a On a copy of the diagram draw arrows to represent the velocity and acceleration of the particle. [2]
b Calculate the angular speed and the linear speed of the particle. [2]
c The coe cient of static friction between the disc and the particle is 0.82. Determine the largest distance
from the centre of the disc where the particle can be placed and still not move relative to the disc. [3]
d The particle is to remain at its original distance of 22cm from the centre of the disc.
i Determine the maximum angular speed of the disc so that the particle does not move relative to
the disc. [2]
ii The disc now begins to rotate at an angular speed that is greater than the answer in d i. Describe
qualitatively what happens to the particle. [2]
Answer:
a. Please find attached the diagram of the disc, having arrows that represent the velocity and the acceleration of the particle placed on it
b. The angular speed is approximately 4.488 rad/s
The linear speed is approximately 0.987 m/s
c. The largest distance from the center of the disc where the particle can be placed and still not move is approximately 0.399 m from the center of the disc
d. i The maximum angular speed of the disk so that the particle does not move relative to the disk is approximately 6.044 rad/sec
ii When the angular speed with which the disc rotates is more than the the answer of question d i above, the particle slips on the disc, and the disc begins to rotate faster than the particle, while the particle is swung in an outward radial direction off the disc due to the centrifugal forces
Explanation:
The given parameters are;
The radius of the horizontal disc, r = 45 cm = 0.45 m
The time the disc makes one full revolution, T = 1.40 s
The mass of the particle placed on the disc = 0.054 kg
The location on the disc the particle is placed = 22 cm from the disc's center
a. Please find attached the diagram of the disc created with Microsoft Visio, with arrows representing the velocity and the acceleration of the particle placed on the disk
b. The angular speed, ω = 2·π/T = 2 × π/1.4 ≈ 4.488 rad/s
The linear speed, v = ω × r = 4.488 rad/s × 0.22 m ≈ 0.987 m/s
The linear speed, v ≈ 0.987 m/s
c. The given coefficient of static friction = 0.82
Therefore;
The frictional force that prevents motion = Weight of the particle × The coefficient of static friction
The frictional force that prevents motion is [tex]F_f[/tex] = 0.054 × 9.8 × 0.82 ≈ 0.434 N
[tex]F_f[/tex] ≈ 0.434 N
Therefore, for the largest distance from the center of the disc where the particle can be placed and still not move, r, is given by the formula for the centripetal force, [tex]F_c[/tex], acting on the particle as follows;
For static equilibrium, no movement of the particle relative to the disc, we have;
[tex]F_f[/tex] = [tex]F_c[/tex]
Where;
[tex]F_c = \dfrac{m \times v^2}{r} = m \times \omega ^2 \times r[/tex]
Which gives;
[tex]F_c = {0.054 \ kg \times (4.488 \ rad/s)^2} \times r = F_f = 0.434 \ N[/tex]
r = 0.434 N/(0.054 kg × (4.488 rad/s)²) ≈ 0.399 m
The largest distance from the center of the disc where the particle can be placed and still not move, r = 0.399 m from the center of the disc
d. i From the static equilibrium equation where r = 0.22 m, we have;
[tex]F_c = {0.054 \ kg \times \omega ^2} \times 0.22 \ m = F_f = 0.434 \ N[/tex]
ω = √(0.434 N/(0.054 kg × (0.22 m))) ≈ 6.044 rad/sec
The maximum angular speed of the disk so that the particle does not move relative to the disk, ω ≈ 6.044 rad/sec
ii When the angular speed with which the disc rotates is more than the the answer of question d i above, we have
The particle begins to slip on the disc such that the disc rotates faster than the particle and the particle tends to rotate slower than the speed pf the disc and is swung off the disc by centripetal force acting on the particle due to the rotational motion of the disc.
Describe the 3 types of collisions. Then explain how they are alike and different.
what is meant by momentum?
Answer:
Im afraid i need to to know more on what your asking, are you asking what is momentum?
Explanation:
Because therefore it is the quantity of motion of a moving body, measured as a product of its mass and velocity to the state of motion
or
p = mv
I hope this helps and have a good day, or to best that you can make it <33
Answer:
Momentum can be defined as "mass in motion "OrMomentum is how we measure mass that is in motion ORMomentum,product of mass of particle and its velocityExplanation:
Please mark my answer as a brainliest. Please follow me. ❤❤❤❤❤Potassium chloride forms a solid made up of a highly organized set of
positive and negative particles. Which term describes this solid?
A. An ion
B. A crystal
C. An atom
D. A molecule
Answer: It is b. a crystal
Explanation:
Answer:
B. A crystal
Explanation:
help please 10 pts and quick!
can someone write me a short response
Answer:
Explanation:
Pecan 1 and 4 seem the best answer
Write two different unit in which mass is measured.
Answer:
kilograms and grams
Explanation:
kilograms is the stadard unit for mass according to the SI system.
Grams is another unit for mass.
[tex]x3n + 5x2n + 12xn + 18 \div xn + 3[/tex]
Answer:
sorry its impossible
Explanation:
A 750 g ball is raised 3 m off the ground and then thrown. What is the potential energy
of the ball before the throw?
Answer:
22.05 JExplanation:
The potential energy of a body can be found by using the formula
PE = mgh
where
m is the mass in kg
h is the height
g is the acceleration due to gravity which is 9.8 m/s²
From the question
750 g = 0.75 kg
We have
PE = 0.75 × 9.8 × 3
We have the final answer as
22.05 JHope this helps you
A clown in a circus act swings a 2.7-kg metal ball attached to a 72.0-cm nylon string in a horizontal circle above her head, making one revolution in 0.98 s. What is the tension force, Ft, exerted on the string by the ball?
Answer:
Tension, Ft = 79.91 N
Explanation:
The tension in the string is the resultant force that exists in the string due to the centripetal effect of the swinging ball.
From conservation laws, the tension in the string will be equals to the centripetal force acting on the string.
The tension in a string can be obtained using the formula:
[tex]T=mv^2/R[/tex]
where v = linear velocity of the metal ball which equals to the angular velocity of the ball X the radius of the ball.
The radius of the ball is given as 72 cm = 0.72m and the angular velocity = 1.02 rad/second.
Therefore, linear velocity, [tex]v = 2\pi \times 1.02\times 0.72 =4.616m/s[/tex]
The tension in the string will now be equals to [tex]2.7 \times 4.616^2 /0.72 =79.91N[/tex]
Example of first, second and third law of motion.
Examples of Newton's three law of motion.
First law of motion: A rocket being launched up in the atmosphere.
Second law of motion:while riding a bicycle, a bicycle acts as a mass and our legs pushing on the pedals of the bicycle is the force.
Third law of motion:when we jump off from the boat,the boat moves backward.
Hope,it will helpyouu!
A simple harmonic transverse wave is propagating along a string towards the left direction as shown in the figure. figure shows a plot of displacement as function of position at time t=0.The string tension is 3.6 Newton and it’s linear density is 25GM/M. Calculate
I) the amplitude
Ii) the wavelength
Iii) wave speed
Iv) the period
V) The maximum particle speed in the String
Answer:
Amplitude = 5 cm (Heights)Wavelength (λ) = 40 cm Wave speed (v) = 12 m/s (Approx)Time period (T) = 0.033 s (Approx)Maximum particle speed (V) = 9.43 m/sExplanation:
1) Amplitude
Amplitude = 5 cm (Heights)
2) Wavelength (λ)
Wavelength (λ) = 40 cm
3) Wave speed
Wave speed (v) = √ t / μ
Wave speed (v) = √ 3.6 / [25x10⁻³]
Wave speed (v) = 12 m/s (Approx)
4) Time period (T)
Time period (T) = 1/f = (λ)/v
Time period (T) = 0.40m / 12
Time period (T) = 0.033 s (Approx)
5) Maximum particle speed (V)
Maximum particle speed (V) = Aw
Maximum particle speed (V) = [0.05x2x3.14] / 0.033
Maximum particle speed (V) = 9.43 m/s
What is the velocity of a wave with a frequency of 930 Hz and a wavelength of 0.50 m?
Answer:
Hi, thank you for posting your question here at Brainly.
To find the velocity of light or any electromagnetic wave, we use the equation: v = wavelength * frequency. Substituting,
v = 0.5 m * 930 1/s
v = 465 m/s
Brainiest please
Explanation:
the steps of mieosis
Answer:
Since cell division occurs twice during meiosis, one starting cell can produce four gametes (eggs or sperm). In each round of division, cells go through four stages: prophase, metaphase, anaphase, and telophase.
Answer:
here are six stages within each of the divisions, namely prophase, prometaphase, metaphase, anaphase, telophase and cytokinesis
Explanation:
An airplane flies at 40 m/s at an altitude of 50 meters. The pilot drops a heavy package which falls to the ground. Where, approximately, does the package land relative to the plane's new position
Answer:
128 m
Explanation:
From the question given above, the following data were obtained:
Horizontal velocity (u) = 40 m/s
Height (h) = 50 m
Acceleration due to gravity (g) = 9.8 m/s²
Horizontal distance (s) =?
Next, we shall determine the time taken for the package to get to the ground.
This can be obtained as follow:
Height (h) = 50 m
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) =?
h = ½gt²
50 = ½ × 9.8 × t²
50 = 4.9 × t²
Divide both side by 4.9
t² = 50 / 4.9
t² = 10.2
Take the square root of both side
t = √10.2
t = 3.2 s
Finally, we shall determine where the package lands by calculating the horizontal distance travelled by the package after being dropped from the plane. This can be obtained as follow:
Horizontal velocity (u) = 40 m/s
Time (t) = 3.2 s
Horizontal distance (s) =?
s = ut
s = 40 × 3.2
s = 128 m
Therefore, the package will land at 128 m relative to the plane