Either use an appropriate theorem to show that the given set, W, is a vector space, or find a specific example to the contrary.W = {[\begin{array}{ccc}a\\b\\c\\\d\end{array}\right] : 3a+b=c, a+b+2c=2d}

Answers

Answer 1

An appropriate theorem to show that the given set, W, is a vector space. A specific example can be

[tex]\left[\begin{array}{ccc}p\\q\\r\end{array}\right][/tex] , -p- -3q = s  and 3p = -2s - 3r

             

Sets represent values ​​that are not solutions. B. The set of all solutions of a system of homogeneous equations OC.

The set of solutions of a homogeneous equation. Thus the set W = Null A. The null space of n homogeneous linear equations in the mx n matrix A is a subspace of Rn. Equivalently, the set of all solutions of the unknown system Ax = 0 is a subspace of R.A.

The proof is complete because W is a subspace of R2. The given set W must be a vector space, since the subspaces are themselves vector spaces. B. The proof is complete because W is a subspace of R. The given set W must be a vector space, since the subspaces are themselves vector spaces.

The proof is complete because W is a subspace of R4. The given set W must be a vector space, since the subspaces are themselves vector spaces. outside diameter. The proof is complete because W is a subspace of R3. The given set W must be a vector space, since the subspaces are themselves vector spaces.

Let W be the set of all vectors of the right form, where a and b denote all real numbers. Give an example or explain why W is not a vector space. 8a + 3b -4 8a-7b. Select the correct option below and, if necessary, fill in the answer boxes to complete your selection OA. The set pressure is

S = {(comma separated vectors as required OB. W is not a vector space because zero vectors in W and scalar sums and multiples of most vectors are not in W because their second (intermediate) value is not equal to -4. OC. W is not a vector space because not all vectors U, V and win W have the properties

u +v =y+ u and (u + v)+w=u + (v +W).

Learn more about Vector Space:

https://brainly.com/question/16205930

#SPJ4


Related Questions

With respect to the average cost curves, the marginal cost curve: Intersects average total cost, average fixed cost, and average variable cost at their minimum point b. Intersects both average total cost and average variable cost at their minimum points Intersects average total cost where it is increasing and average variable cost where it is decreasing d. Intersects only average total cost at its minimum point

Answers

With respect to the average cost curves, the marginal cost curve: intersects both average total cost and average variable cost at their minimum points that is option B.

The fixed cost per unit of production is the average fixed cost (AFC). AFC will reduce consistently as output grows since total fixed costs stay constant. The variable cost per unit of production is known as the average variable cost (AVC). AVC generally declines until it reaches a minimum and then increases due to the growing and then lowering marginal returns to the variable input. The average total cost curve's (ATC) behaviour is determined by the behaviour of the AFC and AVC.

The marginal cost is the cost added to the overall cost of producing one extra unit of output. MC initially falls until it hits a minimum and then increases. When both AVC and ATC are at their minimal points, MC equals both. Also, when AVC and ATC are dropping, MC is lower; when they are growing, it is higher.Initially, the marginal cost of manufacturing is lower than the average cost of preceding units. When MC falls below AVC, the average falls. The average cost will reduce as long as the marginal cost is smaller than the average cost.When MC surpasses ATC, the marginal cost of manufacturing one more extra unit exceeds the average cost.

Learn more about Marginal cost curve:

https://brainly.com/question/15570401

#SPJ4

Complete question:

With respect to the average cost curves, the marginal cost curve:

A) Intersects average total cost, average fixed cost, and average variable cost at their minimum point

B) Intersects both average total cost and average variable cost at their minimum points

C) Intersects average total cost where it is increasing and average variable cost where it is decreasing

D) Intersects only average total cost at its minimum point

PLS HELPPPP

A group of friends go to a basketball game. The function b(x) represents the amount of money spent, where x is the number of friends at the game. Does a possible solution of (4.5, $107.75) make sense for this function? Explain your answer.

• Yes. The input and output are both possible.
• No. The input is not possible.
• No. The output is not possible.
• No. Neither the input nor output is possible.

Part B: During what interval(s) of the domain is the baseball's height staying the same? (2 points)
Your answer


Part C: During what interval(s) of the domain is the baseball's height decreasing the fastest? Use complete sentences to support your answer.


• 6 -x ‹ 8; the slope is the steepest for this interval
• 8-x < 10; the slope is the steepest for this interval
• 6 • 6

Part A: During what interval(s) of the domain is the baseball's height increasing?

Answers

Answer:

This is not my own answer it is a copied one.

If h (x) represents the amount of money spent and x the amount of friends, then we can write it as in a pair as (x, h (x)) Then the pair given is (6.5, $92.25) Here you see a problem, x is 6.5, knowing that x represents the amount of friends, this is a problem because you need to have a whole number ( you can't have a 0.5 of a friend)

PLEASE HELP ME WITH THISSS!!!

Answers

Answer:

x = 1

Step-by-step explanation:

x + x + x + 30 = 33

3x + 30 = 33

3x + 30 - 30 = 33 - 30

3x = 3

x = 3/3 = 1

in new york city at rush hour, the chance that a taxicab passes someone and is available is 15%. what is the probability that at least 10 cabs pass you before you find one that is free (before: success on 11th attempt or later).

Answers

The probability that at least 10 cabs pass you before you find one that is free is 0.00528665 or approximately 0.53%.

How to determine the probability

The solution to the problem is explained below:

Let, P(passes someone) = 0.15 or 15%

P(available taxi cab) = 0.85 or 85%

Let X be the number of cabs that pass before you find an available taxi cab. In order to find the probability that you see at least 10 cabs pass before you find a free one, we have to use the cumulative distribution function (CDF).

The probability that X is greater than or equal to 10 is equivalent to 1 - (the probability that X is less than 10). That is,P(X >= 10) = 1 - P(X < 10)

The probability that X is less than 10 is the probability of seeing 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9 taxis pass you by.

Hence,P(X < 10) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5) + P(X = 6) + P(X = 7) + P(X = 8) + P(X = 9)P(X = 0) = P(find an available taxi cab on the 1st attempt) = P(available taxi cab) = 0.85

P(X = 1) = P(find an available taxi cab on the 2nd attempt) = P(passed by the 1st taxi cab) x P(available taxi cab on the 2nd attempt) = (1 - P(available taxi cab)) x P(available taxi cab) = 0.15 x 0.85 = 0.1275

P(X = 2) = P(passed by the 1st taxi cab) x P(passed by the 2nd taxi cab) x P(available taxi cab on the 3rd attempt) = (1 - P(available taxi cab))² x P(available taxi cab) = 0.15² x 0.85 = 0.01817

P(X = 3) = (1 - P(available taxi cab))³ x P(available taxi cab) = 0.15³ x 0.85 = 0.002585

P(X = 4) = (1 - P(available taxi cab))⁴ x P(available taxi cab) = 0.15⁴ x 0.85 = 0.0003704

P(X = 5) = (1 - P(available taxi cab))⁵ x P(available taxi cab) = 0.15⁵ x 0.85 = 0.00005287

P(X = 6) = (1 - P(available taxi cab))⁶ x P(available taxi cab) = 0.15⁶ x 0.85 = 0.000007550

P(X = 7) = (1 - P(available taxi cab))⁷ x P(available taxi cab) = 0.15⁷ x 0.85 = 0.0000010825

P(X = 8) = (1 - P(available taxi cab))⁸ x P(available taxi cab) = 0.15⁸ x 0.85 = 0.000000154

P(X = 9) = (1 - P(available taxi cab))⁹ x P(available taxi cab) = 0.15⁹ x 0.85 = 0.0000000221

Hence,P(X < 10) = 0.85 + 0.1275 + 0.01817 + 0.002585 + 0.0003704 + 0.00005287 + 0.000007550 + 0.0000010825 + 0.000000154 + 0.0000000221 = 0.99471335

P(X >= 10) = 1 - P(X < 10) = 1 - 0.99471335 = 0.00528665

Therefore, the probability that at least 10 cabs pass you before you find one that is free is 0.00528665 or approximately 0.53%.

Learn more about probability at

https://brainly.com/question/31112320

#SPJ11

Audrey and Harper are selling fruit for a band fundraiser. Customers can buy small crates of apples and large containers of peaches. Audrey sold 3 small crates of apples and 10 large containers of peaches for a total of $116. Harper sold 11 small crates of apples and 20 large containers of peaches for a total of $292. Find the cost each of one small crate of apples and one large container of peaches. A) Define your variables. Write a system of equations to represent the situation. Solve using any method. Show all of your work. Andrew decides he wants to help the band as well. He sells 7 small crates of apples and 5 larges containers of peaches. How much money does he raise for the band?

Answers

The cost of one small crate of apples is $12 and the cost of one large crate of peaches is $8. The cost of 7 small cates of apples and 5 large containers of peach is $126.

What is the cost of 7 small crates and 5 large containers?

The system of equations that describe the question is:

3s + 10l = 116 equation 1

11s + 20l = 292 equation 2

Where:

s = cost of one small crate of apples

l = cost of one large crate of peaches

The elimination method would be used to determine the values of s and l.

Multiply equation 1 by 2

6s + 20l = 232 equation 3

Subtract equation 3 from equation 2:

5s = 60

Divide both sides of the equation by 5

s = 60 / 5

s = $12

Substitute for s in equation 1:

3(12) + 10l = 116

36 + 10l = 116

10l = 116 - 36

10l = 80

l = 80 / 10

l = 8

Cost of 7 small crates of apples and 5 large containers of peaches = (7 x 12) + (8 x 5) = $124

To learn more about simultaneous equations, please check: https://brainly.com/question/25875552

#SPJ1

If a counting number with two or more digits remains the same with its digits reversed, then the counting number is a multiple of 11

Answers

True. If a counting number with two or more digits remains the same with its digits reversed, then the counting number is a multiple of 11.

When a two-digit number is reversed, it becomes a new number with the digits swapped, e.g., 12 becomes 21. The difference between the original number and the reversed number is obtained by subtracting one from the other. For example, the difference between 12 and 21 is 9. It can be observed that the difference between any two-digit number and its reverse is always a multiple of 9.

Now, let's consider the three-digit number ABC. When this number is reversed, it becomes CBA. The difference between the two is

(100C + 10B + A) - (100A + 10B + C) = 99(C - A),

which is a multiple of 11.

Therefore, if a counting number with two or more digits remains the same with its digits reversed, then the counting number is a multiple of 11.

Learn more about Counting Numbers:

https://brainly.com/question/29269537
#SPJ4

Complete Question:

If a counting number with two or more digits remains the same with its digits reversed, then the counting number is a multiple of 11. True/ False.

assuming that the p-value to test that the population mean number of errors for the ethanol group (e) is greater than the population mean number of errors for the placebo group (p) is 0.0106 and using a 1% significance level, what is the best conclusion from this hypothesis test in the context of the problem?

Answers

The best conclusion from this hypothesis test in the context of the problem is that we can reject the null hypothesis. The null hypothesis for this problem is that the errors is not greater than the population mean.

What is the best conclusion?

The null hypothesis for this problem is that the population mean number of errors for the ethanol group is not greater than the population mean number of errors for the placebo group.

In other words, the null hypothesis is: H₀: μe ≤ μp. The alternative hypothesis is that the population mean number of errors for the ethanol group is greater than the population mean number of errors for the placebo group. In other words, the alternative hypothesis is: H₁: μe > μp.

The p-value is the probability of getting a test statistic at least as extreme as the one observed, assuming the null hypothesis is true. In this case, the p-value is 0.0106, which is less than the significance level of 0.01. This means that the observed test statistic is significant at the 1% level, and we reject the null hypothesis.

Therefore, we conclude that there is evidence to suggest that the population mean number of errors for the ethanol group is greater than the population mean number of errors for the placebo group.

Learn more about Hypothesis here:

https://brainly.com/question/29519577

#SPJ11

Can you help please? Thanks

Answers

The hypοtenuse's length is c = 17.

Hοw dο yοu figure οut hοw lοng the hypοtenuse is?

Add the square rοοts οf the οther sides tο find the hypοtenuse. Tο find the shοrter side, subtract the squares οf the οther sides, then take the square rοοt.

Using the Pythagοrean theοrem, we can calculate the length οf the right triangle's missing side:

[tex]a^2 + b^2 = c^2[/tex]

where a, b, and c are the lengths οf the triangle's legs, and c is the length οf the hypοtenuse.

The lengths οf the twο legs are given in this case: a = 8 and b = 15. Sο we can plug the fοllοwing values intο the equatiοn:

[tex]8^2 + 15^2 = c^2[/tex]

[tex]64 + 225 = c^2[/tex]

[tex]289 = c^2[/tex]

When we take the square rοοt οf bοth sides, we get:

[tex]c = \sqrt{(289)} = 17[/tex]

As a result, the hypοtenuse length is c = 17.

To know more about Length of Hypotenuse visit:

brainly.com/question/16893462

#SPJ1

if log a = 0.05 , what is log (100a)?

Answers

0.6990 is value of logarithm .

A logarithm is defined simply.

The logarithm represents the power to which a number must be raised to obtain another number (see Section 3 of this Math Review for more about exponents).

                              As an illustration, the base ten logarithm of 100 is 2, since ten multiplied by two equals 100: log 100 = 2, since 102 = 100. Binary logarithms, which have a base of 2, natural logarithms, which have a base of e 2.71828, and common logarithms with a base of 10 are the four most popular varieties of logarithms.

Now, log0.1= log(1/10) =log (10^-1) =-1 log10

Here log 10= 1 .

 log a = 0.05

log (100a) =  log (100 * 0.05)

                 =  log( 5.00)

                 = log(5)

                = 0.6990

Learn more about logarithm

brainly.com/question/30085872

#SPJ1

The velocity of a particle. P. moving along the x-axis is given by the differentiable function v, where (t) is measured in meters per hour and r is measured in hours. V() is a continuous and decreasing function Selected values of v(f) are shown in the table above. Particle P is at the t= 30 at time t = 0. T(hours) 0 2 4 7 10 V(t) (meters/hour) 20.3 14.4 10 7.3 5 (a) Use a Right Riemann sum with the four subintervals indicated by the data in the table to approximate the displacement of the particle between 0 hr to 10 hr. What is the estimated position of particle Pat t=10? Indicate units of measure. (b) Does the approximation in part (a) overestimate or underestimate the displacement? Explain your reasoning (c) A second particle, Q. also moves along the x-axis so that its velocity for O<=T<= 10 is given by VQ(t) = 35✓t cos( 0.06t^2) meters per hour. Find the time interval during which the velocity of particle vo(t) is at least 60 meters per hour. Find the distance traveled by particle Q during the interval when the velocity of particle Q is at least 40 meters per hour. (d) At time t = 0, particle Q is at position x = -90. Using the result from part (a) and the function vo(t) from part (c), approximate the distance between particles P and Q at time t = 10.

Answers

The velocity of a particle. P. moving along the x-axis is given by the differentiable function v, where (t) is measured is given by:

A differential function v gives the velocity of a particle P travelling down the x-axis, where v(t) is measured in metres per hour and t is measured in hours. v(t) is a declining function that is continuous. The table below shows several examples of v(t) values.

T [hours]                   0           2      4           7      10

v(t) [meters/hour] 20.3 14.4     10  7.3       5

a) We know that the particle's displacement is the area under the curve v(t). We can calculate the particle's displacement by integrating v(t). Because v(t) is a monotonous (constantly declining) differentiable function, it is also Riemann Integrable. There are now five non-uniform subdivisions:

Partition                     t0   t1 t2 t3 t4

T [hours]                      0           2 4 7 10

v(t) [meters/hour]   20.3 14.4 10 7.3 5

Using Right Riemann sum to approximate the displacement of particle between 0 hr and 10 hr is given by:

[tex]\sum_{n=1}^{4}v(t_n)\Delta t_n=v(t_1)(t_1-t_0)+v(t_2)(t_2-t_1)+v(t_3)(t_3-t_2)+v(t_4)(t_4-t_3) \\=(14.4)(2)+(10)(2)+(7.3)(3)+(5)(3) \\=28.8+20+21.9+15 \\=85.7[/tex]

Therefore, the total displacement between 0 hr and 10 hr is is 85.7 meters.

The estimated position of particle P at time t = 10 hour is 115.7 (= 30 +85.7) meters.

b) Because the function v(t) is decreasing and we are estimating the integral using the Right Riemann sum, the approximation in part(a) underestimates the displacement.

c) A second particle Q also moves along the x-axis so that its velocity is given by :

[tex]V_Q(t)=35\sqrt{t}\cos(0.06t^2)\text{ meters per hour for }0\leq t\leq 10.[/tex]

Hence, the time interval during which the velocity of a particle is atleast 60 meters per hour is [9.404, 10].

Now, the time periods during which a particle's velocity is at least 40 metres per hour are [1.321,4.006] and [9.218, 10]. The distance travelled by the particle Q when its velocity is at least 40 metres per hour is then calculated. :

[tex]\int_{1.321}^{4.006}v_Q(t)dt+\int_{9.218}^{10}v_Q(t)dt\\\\=\int_{1.321}^{4.006}35\sqrt{t}\cos(0.06t^2)dt+\int_{9.218}^{10}35\sqrt{t}\cos(0.06t^2)dt[/tex]

d) At time t = 0, particle Q is is at position x = -90.

We know that P is at xp =  115.7 meters.

Now, The position of Q at t = 10 hr is xq:

[tex]x_q=-90+\int_{0}^{10}v_Q(t)dt=-90+\int_{0}^{10}35\sqrt{t}\cos(0.06t^2)dt[/tex]

And the distance between Q and P is given by :

[tex]|x_p-x_q|=|115.7-(-90+\int_{0}^{10}35\sqrt{t}\cos(0.06t^2)dt)|[/tex]

               [tex]\\=|205.7-\int_{0}^{10}35\sqrt{t}\cos(0.06t^2)dt|[/tex]

Learn more about Velocity particle question:

https://brainly.com/question/14879436

#SPJ4

The circumference of a circle is 23π cm. What is the area, in square centimeters? Express your answer in terms of π .

Answers

Answer:

132.25 π

Step-by-step explanation:

The formula for circumference is 2πr. 2πr = 23π, so r = 11.5

Formula for area is πr^2

11.5^2 * π = 132.25 π

Hope this helps!

Suppose the number of dropped footballs for a wide receiver, over the course of a season, are normally distributed with a mean of 16 and a standard deviation of 12. What is the z-score for a wide receiver who dropped 13 footballs over the course of a season?
A. -3
B. -1.5
C. 1.5
D. 3

Answers

The z-score formula is:

z = (x - μ) / σ

where x is the observed value, μ is the mean, and σ is the standard deviation.

Substituting the given values:

z = (13 - 16) / 12
z = -0.25

Therefore, the z-score for a wide receiver who dropped 13 footballs over the course of a season is closest to option A: -3.

If a car runs at a constant speed and takes 3 hrs to run a distance of 180 km, what time it
will take to run 100 km?

Answers

Answer:

100 minutes

Step-by-step explanation:

We know

It takes 3 hrs to run a distance of 180 km.

180 / 3 = 60 km / h

60 minutes = 60 km

40 minutes = 40 km

What time it will take to run 100 km?

60 + 40 = 100 minutes

So, it takes 100 minutes to run 100 km.

Use the shell method to write and evaluate the integral that gives the volume of the solid generated by revolving the plane region about the x-axis. x + y2 = 4 y 2 1 X 2 4

Answers

In the following question, among the conditions given, The volume of the solid generated by revolving the plane region about the x-axis is (128/3)π.

To find the volume of the solid generated by revolving the plane region about the x-axis, we can use the shell method. The given region is bounded by the lines x=2, y=1 and x+y^2=4.

The integral to evaluate is:
V = 2π ∫r2h dx,
where r = x+y^2 = 4, h = y = 1, and x varies from 2 to 4.

Therefore, V = 2π ∫4^2*1 dx, from x = 2 to x = 4.

Evaluating the integral, we have:
V = 2π[4x^3/3]24
V = 2π(64/3 - 8/3)
V = (128/3)π
Therefore, the volume of the solid generated by revolving the plane region about the x-axis is (128/3)π.

For more such questions on plane region

https://brainly.com/question/2254410

#SPJ11


a rectangular swimming pool 50 ft long, 30 ft wide, and 8 ft deep is filled with water to a depth of 6 ft. use an integral to find the work required to pump all the water out over the top. (take as the density of water lb/ft. )

Answers

The work required to pump all the water out of the rectangular swimming pool over the top is approximately 2,323,200 ft-lb.

We have,

To find the work required to pump all the water out of the rectangular swimming pool, we can use the concept of work as the force multiplied by the distance.

First, let's calculate the weight of the water in the pool.

The weight of an object is given by the formula:

Weight = mass x gravitational acceleration

Since the density of water is given as 1 lb/ft³, we need to find the volume of water in the pool.

The volume of the pool is given by the formula:

Volume = length x width x depth

Volume = 50 ft x 30 ft x 6 ft = 9000 ft³

Now, let's calculate the weight of the water:

Weight = density x volume x gravitational acceleration

Weight = 1 lb/ft³ x 9000 ft³ x 32.2 ft/s² ≈ 290,400 lb

To pump all the water out over the top, we need to raise it to the height of the pool, which is 8 ft.

The work required to pump the water out is given by the formula:

Work = weight x height

Work = 290,400 lb x 8 ft = 2,323,200 ft-lb

Therefore,

The work required to pump all the water out of the rectangular swimming pool over the top is approximately 2,323,200 ft-lb.

Learn more about rectangles here:

https://brainly.com/question/15019502

#SPJ12

Find the value of the expression x+|x| if x≥0

Answers

Step 1: x is a positive number, so the absolute value of x will be equal to x.

Step 2: The expression x+|x| simplifies to 2x

Step 3: Therefore, the expression x+|x| = 2x if x≥0

suppose one painter can paint the entire house in twelve hours, and the second painter takes eight hours to paint a similarly-sized house. how long would it take the two painters together to paint the house?

Answers

It would take the two painters together eight hours to paint the house

Step-by-step explanation: Given that, One painter can paint the entire house in twelve hours. The second painter takes eight hours to paint a similarly-sized house. To find, How long would it take the two painters together to paint the house? Suppose one painter takes x hours to paint the house.

Therefore, the other painter will take x-4 hours to paint the same house. According to the question, [tex]1/x+1/(x-4)=1/12+1/8[/tex] Multiply by LCM, [tex]8(x-4)=12x+12(x-4)8x-32=6x+484x=80x=20[/tex]Therefore, the first painter will take 20 hours to paint the house. The second painter will take 16 hours (20-4). Together they will take, [tex]1/20+1/16=0.1+0.0625=0.1625[/tex] Thus, they will take 6.1538 hours which can be rounded to 4.8 hours.

See more about hours at: https://brainly.com/question/291457

#SPJ11

If y varies inversely with x and y is = to 100 x = 25 what is the value of y when x=10

Answers

[tex]\qquad \qquad \textit{inverse proportional variation} \\\\ \textit{\underline{y} varies inversely with \underline{x}} ~\hspace{6em} \stackrel{\textit{constant of variation}}{y=\cfrac{\stackrel{\downarrow }{k}}{x}~\hfill } \\\\ \textit{\underline{x} varies inversely with }\underline{z^5} ~\hspace{5.5em} \stackrel{\textit{constant of variation}}{x=\cfrac{\stackrel{\downarrow }{k}}{z^5}~\hfill } \\\\[-0.35em] ~\dotfill[/tex]

[tex]\stackrel{\textit{"y" varies inversely with "x"}}{y = \cfrac{k}{x}}\hspace{5em}\textit{we also know that} \begin{cases} x=25\\ y=100 \end{cases} \\\\\\ 100=\cfrac{k}{25}\implies 2500=k\hspace{12em}\boxed{y=\cfrac{2500}{x}} \\\\\\ \textit{when x = 10, what's "y"?}\qquad y=\cfrac{2500}{10}\implies y=250[/tex]

Find a basis for the vector space of polynomialsp(t)of degree at most two which satisfy the constraintp(2)=0. How to enter your basis: if your basis is1+2t+3t2,4+5t+6t2then enter[[1,2,3],[4,5,6]]

Answers

In the following question, among the conditions given, {q1, q2} is a basis for the vector space of polynomials p(t) of degree at most two that satisfy the constraint p(2) = 0. In this particular case, we must enter our basis as [[1,0,-4],[0,1,-2]], since q1(t) = t^2 - 4 and q2(t) = t - 2.

To find a basis for the vector space of polynomials p(t) of degree at most two which satisfy the constraint p(2)=0, we can take the following steps:
1. Rewrite the polynomials as linear combinations of the form a + bt + ct^2
2. Use the constraint p(2) = 0 to eliminate one of the coefficients a, b, or c
3. Normalize the polynomials so that they are unit vectors
For example, if your basis is 1 + 2t + 3t^2, 4 + 5t + 6t2 then you can enter it as [[1,2,3],[4,5,6]].

For more such questions on polynomials

https://brainly.com/question/4142886

#SPJ11

Write the equation of a line perpendicular to `y=3` that goes through the point (-5, 3).

Answers

Answer:

The equation of a line perpendicular to y=3 that goes through the point (-5, 3) is: x = -5.

Step-by-step explanation:

To find the equation of a line perpendicular to y=3 that goes through the point (-5, 3), we need to remember that the slope of a line perpendicular to another line is the negative reciprocal of the slope of the original line.

The equation y=3 is a horizontal line that goes through the point (0,3), and its slope is zero. The negative reciprocal of zero is undefined, which means that the line perpendicular to y=3 is a vertical line.

To find the equation of this vertical line that goes through the point (-5, 3), we can start with the point-slope form of a linear equation:

y - y1 = m(x - x1)

where m is the slope of the line and (x1, y1) is a point on the line. Since the line we want is vertical, its slope is undefined, so we can't use the point-slope form directly. However, we can still write the equation of the line using the point (x1, y1) that it passes through. In this case, (x1, y1) = (-5, 3).

The equation of the vertical line passing through the point (-5, 3) is:

x = -5

This equation tells us that the line is vertical (since it doesn't have any y term) and that it goes through the point (-5, 3) (since it has x=-5).

So, the equation of a line perpendicular to y=3 that goes through the point (-5, 3) is x = -5.

Answer:

x= -5

Step-by-step explanation:

The perpendicular line is anything with x= __.

x= -5 however, will go through the point (-5, 3) and that is our answer.

listed are 29 ages for academy award winning best actors in order from smallest to largest. 18; 21; 22; 25; 26; 27; 29; 30; 31; 33; 36; 37; 41; 42; 47; 52; 55; 57; 58; 62; 64; 67; 69; 71; 72; 73; 74; 76; 77 a. (5pts) find the score at the 20th percentile

Answers

The score at the 20th percentile is 27.

To find the score at the 20th percentile of the 29 ages for Academy Award winning best actors, follow the steps below:

Arrange the given ages from smallest to largest.

18; 21; 22; 25; 26; 27; 29; 30; 31; 33; 36; 37; 41; 42; 47; 52; 55; 57; 58; 62; 64; 67; 69; 71; 72; 73; 74; 76; 77

Determine the total number of data points

n = 29

Find the rank of the percentile

20th percentile = (20/100) * 29 = 5.8 = 6 (rounded to the nearest whole number).The rank of the percentile is 6.

Use the rank to determine the corresponding data value. The corresponding data value is the value at the 6th position when the data is arranged in ascending order. The score at the 20th percentile is 27.

To learn more about score at percentile refer :

https://brainly.com/question/14444761

#SPJ11

-3(-4x + 5) = [?]x - [ ]


(Using the distributive property)

Answers

The answer to the distributive property-based problem -3(-4x + 5) = [?]x - [] is 12x - 15.

what is equation ?

A mathematical assertion proving the equality of two expressions is known as an equation. Variables, constants, and mathematical processes like addition, subtraction, multiplication, and division are frequently included. Finding the value of the variable that makes an equation correct is the aim of equation solving. Linear equations, quadratic equations, and exponential equations are just a few of the different ways that equations can be expressed.

given

-3(-4x + 5) = [?]x - [ ]

12x - 15

by distributive property

The answer to the distributive property-based problem -3(-4x + 5) = [?]x - [] is 12x - 15.

To know more about equation visit:

https://brainly.com/question/649785

#SPJ1

Calculate the amount of interest on $4,000. 00 for 4 years, compounding daily at 4. 5 % APR. From the Monthly Interest Table use $1. 197204 in interest for each $1. 00 invested

Answers

The amount of interest earned on $4,000.00 for 4 years, compounding daily at 4.5% APR, is $1,064.08.

To calculate the amount of interest on $4,000.00 for 4 years, compounding daily at 4.5% APR, we can use the formula for compound interest:

A = P(1 + r/n)^(nt)

where A is the final amount, P is the principal, r is the annual interest rate as a decimal, n is the number of times the interest is compounded per year, and t is the time in years.

In this case, we have P = $4,000.00, r = 0.045, n = 365 (since interest is compounded daily), and t = 4. Plugging these values into the formula, we get:

A = $4,000.00(1 + 0.045/365)^(365*4)

A = $4,000.00(1.0001234)^1460

A = $4,889.68

The final amount is $4,889.68, which means that the interest earned is:

Interest = $4,889.68 - $4,000.00 = $889.68

We are given that the monthly interest table shows that $1.197204 in interest is earned for each $1.00 invested. Therefore, to find the interest earned on $4,000.00, we can multiply the interest earned by the factor:

$1.197204 / $1.00 = 1.197204

Interest earned = $889.68 x 1.197204 = $1,064.08

To learn more about interest click on,

https://brainly.com/question/28895435

#SPJ4

10) A rectangle has a width of 2m+3. The length
is twice as long as the width. What is the length
of the rectangle?

Answers

Answer:

4m + 6

Step-by-step explanation:

Since the length is twice as long your equation should look like this

2(2m + 3) = L

which would be 4m + 6 as the length of the rectangle

The rate of depreciation dV/dt of a machine is inversely proportional to the square of t + 1, where V is the value of the machine t years after it was purchased. The initial value of the machine was $500,000, and its value decreased $100,000 in the first year. Estimate its value after 4 years.

Answers

The estimated value of the machine after 4 years when the rate of depreciation dV/dt is inversely proportional to the square of t + 1 is $234,375.

Since the rate of depreciation is inversely proportional to the square of t + 1, we can write:

dV/dt = k / (t + 1)²

where k is the constant of proportionality. We can find k by using the initial value of the machine:

dV/dt = k / (t + 1)² = -100,000 / year when t = 0 (the first year)

Therefore, k = -100,000 * (1²) = -100,000.

To find the value of the machine after 4 years, we need to solve the differential equation:

dV/dt = -100,000 / (t + 1)

We can do this by separating variables and integrating:

∫dV / (V - 500,000) = ∫-100,000 dt / (t + 1)²

ln|V - 500,000| = 100,000 / (t + 1) + C

where C is the constant of integration.

We can find C by using the initial value of the machine:

ln|500,000 - 500,000| = 0 = 100,000 / (0 + 1) + C

Therefore, C = -100,000.

Substituting this value of C, we get:

ln|V - 500,000| = 100,000 / (t + 1) - 100,000

ln|V - 500,000| = -100,000 / (t + 1) + ln|e¹⁰|

ln|V - 500,000| = ln|e¹⁰ / (t + 1)²|

V - 500,000 = [tex]e^{10/(t + 1)²)}[/tex]

V = [tex]e^{10/(t + 1)²)}[/tex] + 500,000

Finally, we can estimate the value of the machine after 4 years by substituting t = 3:

V = [tex]e^{10/(3 + 1)²}[/tex] + 500,000

V ≈ $234,375

Therefore, the correct answer is $234,375.

To know more about  rate of depreciation, refer here:

https://brainly.com/question/11861805#

#SPJ11

machines at a factory produce circular washers with a specified diameter. the quality control manager at the factory periodically tests a random sample of washers to be sure that greater than 90 percent of the washers are produced with the specified diameter. the null hypothesis of the test is that the proportion of all washers produced with the specified diameter is equal to 90 percent. the alternative hypothesis is that the proportion of all washers produced with the specified diameter is greater than 90 percent. which of the following describes a type i error that could result from the test? responses the test does not provide convincing evidence that the proportion is greater than 90%, but the actual proportion is greater than 90%. the test does not provide convincing evidence that the proportion is greater than 90%, but the actual proportion is greater than 90%. the test does not provide convincing evidence that the proportion is greater than 90%, but the actual proportion is equal to 90%. the test does not provide convincing evidence that the proportion is greater than 90%, but the actual proportion is equal to 90%. the test provides convincing evidence that the proportion is greater than 90%, but the actual proportion is equal to 90%. the test provides convincing evidence that the proportion is greater than 90%, but the actual proportion is equal to 90%. the test provides convincing evidence that the proportion is greater than 90%, but the actual proportion is greater than 90%. the test provides convincing evidence that the proportion is greater than 90%, but the actual proportion is greater than 90%. a type i error is not possible for this hypothesis test.

Answers

Answer:

the test does not provide convincing evidence that the proportion is greater than 90%

4 1/2 divided by 3 (fraction problem)

Answers

Answer: 9/6 or 1 1/2

Step-by-step explanation:

9/2 ÷ 3

KCF (keep, change, flip)

9/2 × 1/3

Solve.

Final answer: 9/6

hope i helped :)

suppose that 6 j of work is needed to stretch a spring from its natural length of 26 cm to a length of 36 cm. (a) how much work is needed to stretch the spring from 30 cm to 32 cm? (round your answer to two decimal places.) 0.6 incorrect: your answer is incorrect. j (b) how far beyond its natural length will a force of 20 n keep the spring stretched? (round your answer one decimal place.)

Answers

(a)The amount of work needed to stretch the spring from 30 cm to 32 cm is 0.6 J. (b) The distance the spring will be stretched by a 20 N force is 0.03 m.

The formula for the force needed to keep a spring stretched beyond its natural length is F = kx where F is the force, k is the spring constant, and x is the distance from the spring's natural length. The spring constant k is given by the formula: k = (Wd)/x² where W is the work done, d is the distance the spring is stretched from its natural length, and x is the distance from the spring's natural length.

Substituting the values for W, d, and x gives: k = (6 J)/(0.10 m)²

k = 600 N/m

Using the formula F = kx and substituting the values for F and k gives: 20 N = (600 N/m)x

Solving for x gives: x = (20 N)/(600 N/m)

x = 0.0333 m.

Hence, the correct answer is 0.03 m.

To learn more about "Work": brainly.com/question/8917733

#SPJ11

Which of the following statements is about CD and CE is true? A. CD is longer than CE B. CE is longer than CD C. CD and CE are the same length D. CE is 5 units long

Answers

From the given graph, CE is longer than CD.

What is the distance between two coordinates?

The length of the line segment bridging two locations in a plane is known as the distance between the points. d=√((x₂ - x₁)²+ (y₂ - y₁)²) is a common formula to calculate the distance between two points. This equation can be used to calculate the separation between any two locations on an x-y plane or coordinate plane.

Coordinates of E(8,6)

Coordinates of C(6,1)

Coordinates of D(3,-3)

x=8, y=6

x=6, y=1

x=3, y=-3

Distance CE=√{(8-6)² +(6-1)²} = √29

Distance CD=√{(6-3)² +(1+3)²}= √25=5

Therefore, CE is longer than CD.

To know more about lines, visit

https://brainly.com/question/30003330

#SPJ1

the product of 2 rational numbers is 16/3.If one of the rational number is -26/3,find the other rational number

Answers

Answer:

- [tex]\frac{8}{13}[/tex]

Step-by-step explanation:

let n be the other rational number , then

- [tex]\frac{26}{3}[/tex] n = [tex]\frac{16}{3}[/tex]

[a number × its reciprocal = 1 ]

multiply both sides by the reciprocal - [tex]\frac{3}{26}[/tex]

n = [tex]\frac{16}{3}[/tex] × - [tex]\frac{3}{26}[/tex]  ( cancel the 3 on numerator/ denominator )

n = - [tex]\frac{16}{26}[/tex] = - [tex]\frac{8}{13}[/tex]

Other Questions
Atmospheric deposition is receiving increased attention in the scientific community, and has become the subject of a specific research area in the environmental sciences. Acid rain is detrimental to our ecosystems and can be measured in several ways. Which of the following methods would best identify changes from acid deposition in an area over time?a. Calculating the change in sulfur dioxide emissions from coal-burning power plants over timeb. Mapping out coal-burning power plant locations over the past 50 yearsc. Measuring the pH of rainwater and surface water in affected areasd. Monitoring the long-term chemical and biological parameters of an ecosystem First-mover advantages are most likely to arise when Multiple Choice there are no fast-followers or late entrants present to counter a pioneering move. the first-mover can meet established industry technical standards. O the costs of pioneering are high relative to the benefits accrued. property rights protections thwart rapid imitation of the initial move. a first-mover's customers face low switching costs. 1. Given the following information for a one-year project, answer the following questions. Recall that PV is the planned value, EV is the earned value, AC is the actual cost, and BAC is the budget at completion. PV=$22,000 EV = $20,000 AC= $25,000 BAC=$120,000 a. What is the cost variance, schedule variance, cost performance index (CPI), and schedule performance index (SPI) for the project? b. How is the project doing? Is it ahead of schedule or behind schedule? Is it under budget or over budget? c. Use the CPI to calculate the estimate at completion (EAC) for this project. Is the project performing better or worse than planned? d. Use the SPI to estimate how long it will take to finish this project. The authors of both passages would most likely agree with which of the following statements about women in the eighteenth century?A) Their natural preferences were the same as those of men.B) They needed a good education to be successful in society.C) They were just as happy in life as men were.D) They generally enjoyed fewer rights than men did. The primary focus of financial statement audits is the discovery of fraud.True or False When analyzing a process flow with flow unit dependent processing time, the flow unit is changed from using ___________ to ______________.a. a unit of demand, a minute of workb. a unit of resource, a unit of demandc. a minute of work,a unit of demandd. a unit of demand, a unit of resource suppose the price of gasoline is $1.60 per gallon. is the quantity demanded at the price of $1.60 per gallon higher or lower than the quantity demanded at the price of $1.40 per gallon? suppose the ring rotates once every 4.10 s . if a rider's mass is 51.0 kg , with how much force does the ring push on her at the top of the ride? gains and losses are reported as non-operating items on the income statement. (true or false) Calculate how much solid NaH2PO4H20 and Na2HPO4 are required to prepare 50.00 mL of a 0.100 M buffer that is 0.0500 M in NaH2PO4 and has a pH of 7.20? according to the definition of health literacy in your book, a person who can read and write but cannot apply health-related information is considered to have low health literacy.A. trueB. False calculate the percentage increase in the diameter of the zone of inhibition when the concentration of honey was increased from 25% to 50%(P.S answer in %) Solve the following problem. Round to one decimal place if necessary. If your answer is correct, you will see an image appear on your screen. what levels of management are found in the business? How does the setting of Tom's real life compare with the setting in his dream in The Prince and the Pauper? Interpret and Evaluate How does the footage that shows the WorldTrade Center and the Pentagon affect your understanding and opinionsabout the events of September 11, 2001? Describe how viewing thefootage of the memorial event affects your response to the actions of thepassengers on United Flight 93.Memorial Is Unveiled Supply a different digit for each letter so that the equation is correct. A given letter always represents the same digit. (50 pts) Explain your strategy for finding the answer. (50 pts) A B C D E X 4 __________ E D C B A Kind of thinking that occurs when people place more importance on maintaining group cohesiveness than on assessing the facts of the problem with which the group is concerned.GroupthinkConformityObedienceCompliance other things the same, a higher interest rate induces people to Eight randomly selected members of a women's golf tournament had scores of 89, 90, 87, 95, 96, 81, 102, 105 on the final day. Find the interquartile range (IQR).