Explanation:
We multiply the y coordinate by -1/3 because of the notation (-1/3)*f(x). Recall that y = f(x). The x coordinate stays the same.
The two triangles are similar. Find the values of the unknown variables
Answer:
x = 84 y = 59°
Step-by-step explanation:
x = (40/30)×63
x = 84
∆ABC = ∆PQR
so y = 59°
Answer:
1.) 47
2.) 28
Step-by-step explanation:
you just had to use the sin equation for both
6(25-8w)+20w for w=2
150−28w
i think i dont know
The point (3, 3) is in what quadrant? 2,1,3,4
Answer:
1
Step-by-step explanation:
(3,3) has a positive x value and a positive y value which means it is in the first quadrant
You flip a coin 8 times and get tails 6 times. Based on this experiment, what is the probability of flipping a coin and getting heads?
Answer:
1/4
Step-by-step explanation:
If you get 6 tails, then that means you got 2 heads. 8-6=2.
probability= 2/8=1/4 based on this experiment.
desceibe how to determine the average rate of change between x=4 and x=6 for the function f(x)=2x^3 +4
[tex]slope = m = \cfrac{rise}{run} \implies \cfrac{ f(x_2) - f(x_1)}{ x_2 - x_1}\impliedby \begin{array}{llll} average~rate\\ of~change \end{array}\\\\[-0.35em] \rule{34em}{0.25pt}\\\\ f(x)= 2x^3+4\qquad \begin{cases} x_1=4\\ x_2=6 \end{cases}\implies \cfrac{f(6)-f(4)}{6-4} \\\\\\ \cfrac{[2(6)^3+4]~~ -~~[2(4)^3+4]}{2}\implies \cfrac{436~~ -~~132}{2}\implies \cfrac{304}{2}\implies 152[/tex]
Which expression is equivalent to 1/4 (5x + 6)?
The expression which is equivalent to 1/4 (5x + 6) is; Choice A: {5(1/4)x} + {6(1/4)x}.
According to the question:
We are required to determine an expression which is equivalent to 1/4 (5x + 6).In a bid to expand the expression; we must multiply each term in the parenthesis by (1/4);
In essence; we have;
{5(1/4)x} + {6(1/4)x}Read more on multiplication;
https://brainly.com/question/847421
PLEASE HELP ME WITH GEOMETRY
Answer:
The answer is A.
Step-by-step explanation:
It is A because both sides match up except for the last pair, where they are the same. Hope this helped!
The area of a square is s2, where s is the side length of the square. Jack has a square-shaped flower garden in his yard. Each side of the garden is 8 feet. What is the area of the flower garden?
Answer:
64 square feet
Step-by-step explanation:
A = s² = 8² = 8*8 = 64
Which expression is undefined?
Answer:
D: [tex]\frac{3}{(6-6)}[/tex]
Step-by-step explanation:
Option A equates to [tex]-\frac{0}{2}=0[/tex]
Option B equates to [tex]\frac{(-4+0)}{8}=\frac{-4}{8}=-\frac{1}{2}[/tex]
Option C equates to [tex]0\div11 =0[/tex]
Option D equates to [tex]\frac{3}{(6-6)}=\frac{3}{0}[/tex] which cannot be defined as division by 0 is impossible
50, 60, 72, ...
Find the 8th term.
Which numbered choice shows a set of numbers whose product is -20 and whose sum is +1?
find the angle of rotation that maps point D onto point A
Answer:
A - 144
Step-by-step explanation:
everything else would be too far. thx
4. This diagram is a straightedge and compass construction of a line perpendicular to line AB passing through point C. Which segment has the same length as segment EA.
a. EC
b. ED
C. BE
d. BD
Answer:
Segment ED has the same length as EA
The line segment which is equal to EA is ED. Therefore, option B is the correct answer.
In the given diagram, a line perpendicular to line AB passes through point C.
What is the tangent to the circle?A tangent to a circle is a line which intersects the circle at only one point. The common point between the tangent and the circle is called the point of contact.
The length of two tangents drawn from an external point to a circle is equal.
From the given figure we can see there are three circles, two large circles and one small circle.
Line segment EA is tangent to a small circle.
The line segment which is equal to EA is ED because ED is another tangent to a small circle from the same external point.
The line segment which is equal to EA is ED. Therefore, option B is the correct answer.
To learn more about the tangent to a circle visit:
https://brainly.com/question/16592747.
#SPJ2
[tex]\sqrt[3]{y} (7\sqrt[3]{8y^2}-\sqrt[3]{y^5} -4y\sqrt[3]{27y^2}[/tex] simplify
Answer:
[tex]\huge\boxed{-y^2+2y}[/tex]
Step-by-step explanation:
[tex]\sqrt[3]y\cdot\left(7\sqrt[3]{8y^2}-\sqrt[3]{y^5}-4y\sqrt[3]{27y^2}\right)\\\\=(\sqrt[3]y)(7\sqrt[3]{8y^2})-(\sqrt[3]y)(\sqrt[3]{y^5})-(\sqrt[3]y)(4y\sqrt[3]{27y^2})\\\\=7\sqrt[3]{(y)(8y^2)}}-\sqrt[3]{(y)(y^5)}-4y\sqrt[3]{(y)(27y^2)}\\\\=7\sqrt{8y^3}-\sqrt{y^6}-4\sqrt{27y^3}\\\\=7\sqrt[3]{2^3y^3}-\sqrt{y^{2\cdot3}}-4\sqrt{3^3y^3}\\\\=7\sqrt[3]{(2y)^3}-\sqrt{(y^2)^3}-4\sqrt{(3y)^3}\\\\=7\cdot2y-y^2-4\cdot3y\\\\=14y-y^2-12y\\\\=-y^2+2y[/tex]
Used:
[tex]a(a+b)=ab+ac\\\\\sqrt[3]{a\cdot b}=\sqrt[3]a\cdot\sqrt[3]b\\\\\sqrt[3]{a^3}=a\\\\(a^n)^m=a^{n\cdot m}[/tex]
Roy used 1/4 of his money on 3 pens and 6 notebooks. The cost of each pen is 3 times the cost of each notebook. He bought some more pens with 2/3 of his remaining money. How many pens did Roy buy altogether?
=========================================================
Explanation:
Roy spends 1/4 of his money on 3 pens and 6 notebooks. That means 3/4 of it is leftover.
2/3 of 3/4 = (2/3)*(3/4) = 1/2 of his money is spent on buying some unknown number of additional pens. We'll come back to this later.
---------------
In terms of cost,
1 pen = 3 notebooks
which is another way of saying 1 pen is the same price as 3 notebooks.
Multiply both sides by 2 to get
2 pens = 6 notebooks
Therefore, saying "3 pens + 6 notebooks" is the same as "3 pens + 2 pens = 5 pens" when just thinking about costs.
---------------
In short, Roy buying 3 pens and 6 notebooks is the same as him buying 5 pens. He spends 1/4 = 25% of his money on getting these 5 pens.
Multiply those two values by 2 to find that 50% = 1/2 of his money would allow him to get 10 pens.
--------------
Recall that at the end of the first section, we concluded that Roy spent 1/2 of his money on buying those unknown additional number of pens. Then the previous section mentioned that 1/2 of his money gets him 10 pens. Therefore, he must have bought 10 additional pens on top of the original 3 mentioned in the instructions.
Overall, he purchased 3+10 = 13 pens
Answer:
13 pens
Step-by-step explanation:
If a pen costs 3 times the cost of a notebook, then the cost of 3 notebooks will equal the cost of a pen. The 6 notebooks that Roy bought are equivalent in cost to 2 pens, so 1/4 of Roy's money is the cost of 3+2 = 5 pens.
After the first purchase, Roy has (1 -1/4) = 3/4 of his money remaining. If he spends 2/3 of that on more pens, he will have spent ...
(2/3)(3/4) = 2/4
of his money on more pens. We've already seen that 1/4 of his money buys 5 pens, so 2/4 will buy 10 more pens.
Roy bought 3 +10 = 13 pens altogether.
Help, im incredibly confused
[tex]f[/tex](x) = 0.20x + 35 : 29.5
Help help help help hep
Answer:
Yes
Step-by-step explanation:
c. A square that is 8 inches on a side is placed inside a rectangle that has a length of 24 inches and a width of 20 inches. What is the area of the region inside the rectangle that surrounds the square?
Area = length x width
Area of square = 8 x 8 = 64 square inches
Area of rectangle = 24 x 20 = 480 square inches
Area of rectangle surrounding the square = 480 - 64 = 416 square inches
Answer: 416 square inches
What is 40÷1/2 please help me
Answer: Pretty sure it's 80
Step-by-step explanation:
Jackson bought 6 basketballs for 72 dollars what was the price per basket ball
Answer:
the answer would be 12 I say this because 72 divied by 6 would equal 12
Answer:
12 dollars
Set up a proportion.
6/72=1/x
Solve by cross-multiplying (my preferred method) and then you will end up with the final answer of x=12.
12 is the answer :)
PLEASE MARK BRAINLIEST!
THANK YOU & HAVE A WONDERFUL DAY :))
Omar needs at least $8 to buy lunch. Which number line represents this scenario?
Answer:
I'd say none, as we're missing something in this problem. Make sure you've included everything to solve this problem. Thanks.
The area of a square pond is 1000m2.A path of uniform width is surrounded outside the pond and its area is 369m2.find the outer length of the path
Answer:
631 m²
Step-by-step explanation:
Outer length of park = Total area - Area of pond
Outer length of park = 1000 - 369
Outer length of park = 631 m²
Answer:
Hope it will help you a lot.
A waitress is filling coffee mugs at a diner. She pours 12 fluid ounces into each of 5 mugs from a full pot of coffee. If her coffee pot holds 8 cups, how many fluid ounces does she have left?
Answer:
4 fluid ounces
Step-by-step explanation:
A waitress is filling coffee mugs at a diner. She pours 12 fluid ounces into each of 5 mugs from a full pot of coffee. If her coffee pot holds 8 cups, how many fluid ounces does she have left?
Remember
8 fluid ounces = 1 cup.
First you need to do find out how many fluid ounces she poured in total.
So do,
5 mugs × 12 fluid ounces.
which is 60 fluid ounces.
Now that you now that you need to convert 8 cups into fluid ounces.
Like I said at the top 8 fluid ounces = 1 cup.
So you need to do,
8 cups × 8 fluid ounces.
Which is 64 fluid ounces she can hold in her coffee pot.
Now you subtract,
64 fluid ounces - 60 fluid ounces.
Which is 4 fluid ounces left in her coffee pot.
The number of fluid ounces she has left is 4 fluid ounces if the waitress is filling coffee mugs at a diner. She pours 12 fluid ounces into each of the 5 mugs from a full pot of coffee.
What is unit conversion?It is defined as the conversion from one quantity unit to another quantity unit followed by the process of division, and multiplication by a conversion factor.
It is given that:
A waitress is filling coffee mugs at a diner. She pours 12 fluid ounces into each of 5 mugs from a full pot of coffee.
Let x be the number of fluid ounces she has left.
4 fluid ounces
As we know,
8 fluid ounces = 1 cup
The total amount of coffee = 5×12
The total amount of coffee = 60
Total amount = 8 cups × 8 fluid ounces.
x = 64 fluid ounces - 60 fluid ounces.
x = 4 fluid ounces
Thus, the number of fluid ounces she has left is 4 fluid ounces if the waitress is filling coffee mugs at a diner. She pours 12 fluid ounces into each of the 5 mugs from a full pot of coffee.
Learn more about the unit conversion here:
brainly.com/question/14350438
#SPJ2
let f(x)=3x^2-6x+5 what is the leading coefficient
Use the fundamental identities to
Find tan s if sin s=3/4 and s is in quadrant 2
Answer:
Cosine Formula
Thus, the cosine of angle α in a right triangle is equal to the adjacent side's length divided by the hypotenuse. To solve cos, simply enter the length of the adjacent and hypotenuse and solve.
Please help I'll mark brainliest
A cook came across two cups and one saucer in a kitchen cupboard.
Bored for something to do, she weighed each item.
Altogether, the three items came to 12 ounces.
The larger cup with the saucer weighed exactly double of the smaller cup.
The smaller cup with the saucer weighed exactly the same as the larger cup.
What did each item weigh?
Answer: saucer 3 ounces smaller cup 3 ounces larger cup 6 ounces
Step-by-step explanation:
Find an equation of the plane.
The plane that contains the line
x = 3 + 2t,
y = t,
z = 6 − t
and is parallel to the plane
2x + 4y + 8z = 16
Answer:
x +2y +4z = 27
Step-by-step explanation:
The parallel plane will have the same coefficients of x, y, z as the given plane. We notice those have a common factor of 2, so the equation can be reduced to ...
x +2y +4z = constant
This equation is satisfied for every point on the line, so we have ...
(3 +2t) +2(t) +4(6 -t) = constant . . . . . substituting for x, y, z
3 +2t +2t +24 -4t = constant
27 = constant
The equation of the desired plane is ...
x +2y +4z = 27
The normal to the given plane is (2, 4, 8), and the plane we want is parallel to this one so it has the same normal vector.
When t = 0, the given line, and thus the plane we want, passes through the point (3, 0, 6).
Then the equation of the plane is given by
(2, 4, 8) • (x - 3, y - 0, z - 6) = 0
2 (x - 3) + 4y + 8 (z - 6) = 0
2x + 4y + 8z = 54
or
x + 2y + 4z = 27
Hello, would be very nice if someone could help me ! :)
A finite geometric series is the sum of a sequence of numbers. Take the sequence
1, 2, 4, 8, ..., for example. Notice that each number is twice the value of the
previous number. So, a number in the sequence can be represented by the
function f(n) = 2^n-1. One way to write the sum of the sequence through the 5th
number in the sequence is ∑^5 n-1 2^n-1.
This equation can also be written as S5 = 2^0+2^1+ 2^2+ 2^3+ 2^4. If we multiply this equation by 2. the equation becomes 2(S5) = 2^1+ 2^2+ 2^3+ 2^4+ 2^5
What happens if you subtract the two equations and solve for S5? Can you use this information to come up with a way to find any geometric series Sn in the
form ∑^a n-1 b^n-1 ?
Answer:
Step-by-step explanation:
2S₅ - S₅ = 2⁵ - 2⁰
S₅ = 2⁵ - 1
Sₙ = (bᵃ - 1) / (b - 1)
f(x)=x^2. what is g(x)?
Express the following surds in the simplest form
a)
[tex] \sqrt{128} [/tex]
b)
[tex] \sqrt{48} [/tex]
c)
[tex] \sqrt{300} [/tex]
[tex] \sqrt{128} \\ = \sqrt{2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2} \\ = \sqrt{ {2}^{2} \times {2}^{2} \times {2}^{2} } \\ = 2 \times 2 \times 2 \\ = 8[/tex]
[tex] \sqrt{48} \\ = \sqrt{2 \times 2 \times 2 \times 2 \times 3} \\ = \sqrt{ {2}^{2} \times {2}^{2} \times 3 } \\ = 2 \times 2 \sqrt{3} \\ = 4 \sqrt{3} [/tex]
[tex] \sqrt{300} \\ = \sqrt{2 \times 2 \times3 \times 5 \times 5} \\ = \sqrt{ {2}^{2} \times 3 \times {5}^{2} } \\ = 2 \times 5 \sqrt{3} \\ = 10 \sqrt{3} [/tex]
Hope you could get an idea from here.
Doubt clarification - use comment section.