What is the structure of the forebrain that connects the two hemispheres of cerebrum?

What Is The Structure Of The Forebrain That Connects The Two Hemispheres Of Cerebrum?

Answers

Answer 1

Answer:

c. Corpus callosum

Explanation: is correct

Answer 2

Answer:

corpus callosum

Explanation:

right on test


Related Questions

under the biological species concept, what criterion is used to assign populations of organisms to the same biological species?

Answers

Answer: According to the biological species concept, organisms belong to the same species if they can interbreed to produce viable, fertile offspring. Species are separated from one another by prezygotic and postzygotic barriers, which prevent mating or the production of viable, fertile offspring. Speciation is the process by which new species form

Carol and Sam were using the microscope in science class. They used a dropper to put some pond water on their microscope slide. This is what they saw. "That is something living," said Sam. "I don't think so," said Carol. What do you think? Explain.
options:

This is not alive. It is not moving or responding.


This sample is made of identical units. It is not alive.


This is a multicellular organism made of cells. It is living.


This may have been alive once, but not now because it is not moving.

Answers

Answer:

Sam was actually correct. Pond water usually contains microrganisms like bacteria, viruses, and parasites. This is also why people do not drink pond water without getting rid of the impurities.

Explanation:

What is the main function of cellulose in plants? Cant pick between B and C

Answers

To remain stiff and uptight.
So the correct answer should be C

NO LINKS What controls circadian rhythms in humans? Explain how this process works.

Answers

Answer:

The circadian rhythms are controlled by a part of the brain called the Suprachiasmatic Nucleus (SCN), or a group of cells in the hypothalamus that responds to light and dark signals. Thid happens when our eyes perceive light, causing our retinas send a signal to our SCN.

What is the typical configuration of chromosomes in eukaryotic cells?​

Answers

Eukaryotes typically possess multiple pairs of linear chromosomes, all of which are contained in the cellular nucleus, and these chromosomes have characteristic and changeable forms. During cell division, for example, they become more tightly packed, and their condensed form can be visualized with a light microscope.

which is not involved with an inflammatory Response
A. Fever - increased temperature
B. Slowed blood flow
C. White blood cells move to the area of infected
D. inflammation in area

Answers

Slowed blood flow is not an inflammatory response.
Reasoning: a fever is caused by the body trying to kill off any unwanted pathogens with the heat. This is an inflammatory response to the body being infected.
White blood cells move to the infected area in an attempt to kill any pathogens. Since white blood cells are mainly meant to help kill pathogens, it is an inflammatory response to send white blood cells to kill the pathogen.
Lastly, inflammation is caused by the body trying to rid the infected area of the pathogens. Similar to the name “inflammatory”, the body will often cause inflammation in an attempt to get rid of any unwanted pathogens in the body.

This is an inflammatory reaction to an infection in the body. Option D is correct.

What is the inflammatory response?

When tissues are harmed by toxins, germs, trauma, heat, or any other cause, the inflammatory response (inflammation) ensues. A fever is induced by the body's attempt to destroy any infections with heat.

Histamine, bradykinin, and prostaglandins are among the substances released by injured cells. Because of these substances, blood vessels leak fluid into the tissues, producing swelling.

White blood cells migrate to the affected location to destroy any germs. Because white blood cells are primarily intended to aid in the killing of infections, sending white blood cells to destroy the pathogen is an inflammatory reaction.

Finally, inflammation results from the body's attempt to cleanse the contaminated region of microorganisms. Similar to the label “inflammatory,” the body will frequently create inflammation in an attempt to cleanse the body of any undesirable infections.

Therefore, option D is correct.

Learn more about the inflammatory Response, refer to:

https://brainly.com/question/14967011

#SPJ2

which cell type would contain the greatest number of mitochondria?

Answers

Answer:

It is generally believed that the cells that have the most mitochondria in them are the muscle cells.

Answer:

Muscle Cell

Explanation:

Name at least 3 different body systems and how they are being used while you walk and eat pizza at the same time. Try to include specific details about the organs in the body systems and how they work together. Please answer using your own words in complete sentences.



HELP ME ASAP PLEASE... 30 POINTSSSS

Answers

Answer:

skeletal system, nervous system, and digestive system

Explanation:

our nervous system controls our every movement (walking) and skeletal because it makes up the frame work if not we would be total blobs of jello haha. anyways but then when your eating our digestive system when we swallow if goes through the whole phase of digestive system. and then it has to come out somehow so the digestive system at the end we go ahead and do our business.

hope this helps!

Before fossil fuel use became widespread, which of the following did people use for a. energy?
b. wind
c. water
d. animals
e. all of these

Answers

Answer: im not 100% but i think its E all

Explanation:

Which of the following statements is true about chromosomes in multicellular organisms?

Choose 1 answer:
A) a chromosome contains numerous DNA molecules.
B) Chromosomes are located in both the nucleus and cytoplasm of the cell.
C) Each chromosome contains a large number of genes.

Answers

Answer:

Im not sure but c?

Answer:

The answer is c :)

What is Alternation of generation

Answers

Answer:

Alternation of generations is the type of life cycle that occurs in those plants and algae in the Archaeplastida and the Heterokontophyta that have distinct haploid sexual and diploid asexual stages.

Explanation:

A test cross is performed to determine if a specific individual is a carrier. The results generate a 50/50 phenotypic ratio. The test subject was therefore ________.

Answers

Answer:

The test subject was therefore, Heterozygous

The ligand that activates the g-protein linked receptor is:

Answers

Answer:

When a ligand binds to the GPCR it causes a conformational change in the GPCR, which allows it to act as a guanine nucleotide exchange factor (GEF). The GPCR can then activate an associated G protein by exchanging the GDP bound to the G protein for a GTP.

in the dark, an object is more clearly seen when viewed in peripheral vision than when viewed directly. this phenomenon occurs because the rods located in the retina are:

Answers

In the dark, an object is more clearly seen when viewed in peripheral vision than when viewed directly, this phenomenon occurs because the rods located in the retina are: more sensitive in the dark than cones.

The retina extends through the posterior portion of the eyeball is the innermost layer and in it are the photoreceptors: cones and rods.

Rods and cones are the two types of photoreceptor cells in vertebrates that capture light energy (photons) and convert it into electrical signals.

The rods are sensitive to changes in light, since their detection thresholds are low, so they only come into operation when the light intensity is low (scotopic vision or night vision).

Scotopic vision has relatively low acuity, as the details of an object cannot be discerned or its color appreciated.

On the contrary, cones have a much higher threshold for light, they are responsible for daytime vision (photopic vision) and their mission is to detect colors and shapes (details).

Therefore, we can conclude that in the dark, an object is more clearly seen when viewed in peripheral vision than when viewed directly, this phenomenon occurs because the rods located in the retina are: more sensitive in the dark.

Learn more here: https://brainly.com/question/14018797

Suppose a person uses a microscope to look at a cell from the leaf of a tree.


Which structure would they see that would not be found in a cell from a fingernail?



ribosomes



chloroplasts



cilia



mitochondria


do not put a link

Answers

Answer:

chlooplast

Explanation:

because those are the ones that are only in plants and they make photosynthesis

The answer is chloroplast.

Which layers would you expect to see a greatere population of decompsers.

Answers

Answer:

Explanation:

The bottom

which tarsal bone articulates with the tibia and fibula

Answers

Answer:

the talus bone

Explanation:

hope it helps<3

mark me as brainliest

How to determine recombination frequency.

Answers

Answer:

= # recombination/total progeny ×100

b Explain why animals need plant biomass.

Answers

Answer:

its in the type of nutrience they have

Explanation:

Answer:

Plants provide oxygen so are vital to animals in order to survive. Many insects use plants to place their eggs: insects. Or even to protect themselves from the sun. Animals obtain part of their water intake through plants.

Explanation:

hope it helps

I think its B? Can someone explain it to me tho

Answers

Explanation:

I think it should be C because increase in temperature increases molecular motion. Therefore the speed of the moving molecules of both enzymes as well as the substrate will be accelerated. This

will enhance the colliding probability for both enzyme active sites and substrate molecules and more collisions occur between the enzyme active sites and substrate molecules generate greater chances for the reaction to occur. This can continue up to a certain point, after which there is a rapid decline in enzyme activity. This point is referred to

as optimum temperature. When the temperature increases beyond the optimum temperature, the hydrogen bonds, ionic bonds and other weak chemical bonds of enzyme active sites may be disrupted.

This will result a change in the shape of the active site of enzyme which will alter the complementary nature of the active site of enzyme molecules. Therefore, the

complementary binding of enzyme active sites and substrate molecules will be prevented. The above event is called as denaturation of enzyme molecules.

Therefore the rate of enzyme catalyzed reaction or in this case, photosynthesis will start to decline when the temperature increases beyond the optimum temperature and stops completely at certain

temperature, although rate of collision will keep on increasing.

what evidence can be cited from the fossils to reconstruct climate change over time?

Answers

Answer: When studying the museum’s collection of plant fossils for information about the climate, Wing and Barclay start with plant leaves.

Roughly 56 million years ago, during a time called the Paleocene Eocene Thermal Maximum (PETM), Earth’s average temperature rose four to eight degrees Celsius in less than 10,000 years. The cause was geologic processes releasing trillions of tons of carbon dioxide into the atmosphere. The dramatic shift in global climate forced massive upheaval in ecosystems around the world.

“It’s the best analogue for the climate change we’re experiencing today,” Barclay said.

Fossil plants and their leaves from the PETM show that ecosystems shifted massively because of the rapid increase in global temperature. But global warming during the PETM did not come from humans. So, scientists today are working on ways to extrapolate information from that period and apply it to the even faster and more drastic events of today.

What is not an example of DNA?

Answers

Answer:

AMOGUS

Explanation:

Anything other than DNA is not an example of DNA

Why does rainfall allow for species riches

HELP PLEASE!

Answers

Answer:

The coefficient of variation in aboveground biomass of annuals decreased significantly with increasing annual and growing-season precipitation. Species richness of annuals increased significantly with increasing annual precipitation and growing-season precipitation.

Explanation:

What happens during metaphase 2 in meiosis?

Answers

Answer:

During metaphase II, the centromeres of the paired chromatids align along the equatorial plate in both cells. Then in anaphase II, the chromosomes separate at the centromeres. The spindle fibers pull the separated chromosomes toward each pole of the cell.

The different forms matter can take are referred to as states or countries.

Answers

Answer:

Three States of Matter

 

 

Learning Objective

Describe the three states of matter

Key Points

Matter can exist in one of three main states: solid, liquid, or gas

The states of matterThis diagram shows the nomenclature for the different phase transitions.

Solids

A solid’s particles are packed closely together. The forces between the particles are strong enough that the particles cannot move freely; they can only vibrate. As a result, a solid has a stable, definite shape and a definite volume. Solids can only change shape under force, as when broken or cut.

In crystalline solids, particles are packed in a regularly ordered, repeating pattern. There are many different crystal structures, and the same substance can have more than one structure. For example, iron has a body-centered cubic structure at temperatures below 912 °C and a face-centered cubic structure between 912 and 1394 °C. Ice has fifteen known crystal structures, each of which exists at a different temperature and pressure.

A solid can transform into a liquid through melting, and a liquid can transform into a solid through freezing. A solid can also change directly into a gas through a process called sublimation.

Liquids

A liquid is a fluid that conforms to the shape of its container but that retains a nearly constant volume independent of pressure. The volume is definite (does not change) if the temperature and pressure are constant. When a solid is heated above its melting point, it becomes liquid because the pressure is higher than the triple point of the substance. Intermolecular (or interatomic or interionic) forces are still important, but the molecules have enough energy to move around, which makes the structure mobile. This means that a liquid is not definite in shape but rather conforms to the shape of its container. Its volume is usually greater than that of its corresponding solid (water is a well-known exception to this rule). The highest temperature at which a particular liquid can exist is called its critical temperature.

A liquid can be converted to a gas through heating at constant pressure to the substance’s boiling point or through reduction of pressure at constant temperature. This process of a liquid changing to a gas is called evaporation.

Gases

Gas molecules have either very weak bonds or no bonds at all, so they can move freely and quickly. Because of this, not only will a gas conform to the shape of its container, it will also expand to completely fill the container. Gas molecules have enough kinetic energy that the effect of intermolecular forces is small (or zero, for an ideal gas), and they are spaced very far apart from each other; the typical distance between neighboring molecules is much greater than the size of the molecules themselves.

A gas at a temperature below its critical temperature can also be called a vapor. A vapor can be liquefied through compression without cooling. It can also exist in equilibrium with a liquid (or solid), in which case the gas pressure equals the vapor pressure of the liquid (or solid).

A supercritical fluid (SCF) is a gas whose temperature and pressure are greater than the critical temperature and critical pressure. In this state, the distinction between liquid and gas disappears. A supercritical fluid has the physical properties of a gas, but its high density lends it the properties of a solvent in some cases. This can be useful in several applications. For example, supercritical carbon dioxide is used to extract caffeine in the manufacturing of decaffeinated coffee.

Phase Changes –What does a phase change look like at the molecular level? This video takes a look at the molecular structure of solids, liquids, and gases and examines how the kinetic energy of the particles changes. The video also discusses melting, vaporization, condensation, and freezing.

Explanation:pa brainliest answer po

Plzzzzz help meeeee plzzzzzzz

Answers

Answer:

59 is false and 60 and true

Explanation: I think it is right sorry if it is wrong. I hope this helps

Answer: 1) True 2) True

Explanation:

PLEASEEE HELP!! Ill mark brainlist

How/why does the DNA separate?
Discuss porosity or pores, electricity, DNAS charge & size of DNA pieces. Highlight all the 4 terms

Answers

Electrophoresis is a technique commonly used in the lab to separate charged molecules, like DNA, according to size.

Gel electrophoresis is a technique commonly used in laboratories to separate charged molecules like DNA?, RNA? and proteins? according to their size.

Charged molecules move through a gel when an electric current is passed across it.

An electric current is applied across the gel so that one end of the gel has a positive charge and the other end has a negative charge.

The movement of charged molecules is called migration. Molecules migrate towards the opposite charge. A molecule with a negative charge will therefore be pulled towards the positive end (opposites attract!).

The gel consists of a permeable matrix, a bit like a sieve, through which molecules can travel when an electric current is passed across it.

Smaller molecules migrate through the gel more quickly and therefore travel further than larger fragments that migrate more slowly and therefore will travel a shorter distance. As a result the molecules are separated by size.

Gel electrophoresis and DNA

Electrophoresis enables you to distinguish DNA fragments of different lengths.

DNA is negatively charged, therefore, when an electric current is applied to the gel, DNA will migrate towards the positively charged electrode.

Shorter strands of DNA move more quickly through the gel than longer strands resulting in the fragments being arranged in order of size.

The use of dyes, fluorescent? tags or radioactive? labels enables the DNA on the gel to be seen after they have been separated. They will appear as bands on the gel.

A DNA marker with fragments of known lengths is usually run through the gel at the same time as the samples.

By comparing the bands of the DNA samples with those from the DNA marker, you can work out the approximate length of the DNA fragments in the samples.

How is gel electrophoresis carried out?

Preparing the gel

Agarose gels? are typically used to visualise fragments of DNA. The concentration of agarose used to make the gel depends on the size of the DNA fragments you are working with.

The higher the agarose concentration, the denser the matrix and vice versa. Smaller fragments of DNA are separated on higher concentrations of agarose whilst larger molecules require a lower concentration of agarose.

To make a gel, agarose powder is mixed with an electrophoresis buffer and heated to a high temperature until all of the agarose powder has melted.

The molten gel is then poured into a gel casting tray and a “comb” is placed at one end to make wells for the sample to be pipetted into.

Once the gel has cooled and solidified (it will now be opaque rather than clear) the comb is removed.

Many people now use pre-made gels.

The gel is then placed into an electrophoresis tank and electrophoresis buffer is poured into the tank until the surface of the gel is covered. The buffer conducts the electric current. The type of buffer used depends on the approximate size of the DNA fragments in the sample.

Preparing the DNA for electrophoresis

A dye is added to the sample of DNA prior to electrophoresis to increase the viscosity of the sample which will prevent it from floating out of the wells and so that the migration of the sample through the gel can be seen.

A DNA marker (also known as a size standard or a DNA ladder) is loaded into the first well of the gel. The fragments in the marker are of a known length so can be used to help approximate the size of the fragments in the samples.

The prepared DNA samples are then pipetted into the remaining wells of the gel.

When this is done the lid is placed on the electrophoresis tank making sure that the orientation of the gel and positive and negative electrodes is correct (we want the DNA to migrate across the gel to the positive end).

Separating the fragments

The electrical current is then turned on so that the negatively charged DNA moves through the gel towards the positive side of the gel.

Shorter lengths of DNA move faster than longer lengths so move further in the time the current is run.

The distance the DNA has migrated in the gel can be judged visually by monitoring the migration of the loading buffer dye.

The electrical current is left on long enough to ensure that the DNA fragments move far enough across the gel to separate them, but not so long that they run off the end of the gel.

Illustration of DNA electrophoresis equipment used to separate DNA fragments by size. A gel sits within a tank of buffer. The DNA samples are placed in wells at one end of the gel and an electrical current passed across the gel. The negatively-charged DNA moves towards the postive electrode. Image credit: Genome Research Limited

tank.

Mitosis is a type of cell division. organize the images below to show the steps of mitosis.
(QUICK PLZ)

Answers

Answer:

i believe its the first

Explanation:

Please help me with this! The question on the image

Answers

A. higher, lower B. 2 to 1

2.

No movement of water would have

occurred if they were isotonic.

3.

A. Side 2B. Side 1

If the environment gets cold, humans will often respond involuntarily by shivering in order to:
a. keep body temperature the same as the external temperature
b. increase body temperature
C. decrease body temperature
d. regulate blood pressure

Answers

Answer:

increases body temperature

Explanation:

this is because when you shiver your blood vessels contract which then increases your body temperature  

If the environment gets cold, humans will often respond involuntarily by shivering in order to increase body temperature. So, the correct option is B.

What do you mean by Environment?

An environment may be defined as anything that is present in the surroundings of living entities that is either biotic or abiotic.

The process of shivering causes the blood vessels to contract and relax at a rapid rate to maintain homeostasis. The signals of rapid contractions are sent by the hypothalamus through nerve impulses.

Therefore, the correct option for this question is B.

To learn more about Shivering, refer to the link:

https://brainly.com/question/14319427

#SPJ2

Other Questions
Which line has a constant of proportionality between y and x of 4/3 Which of the following is the best summary of this map? (1 point) why is it necessary for the human body to maintain homeostasis? The _______ horn is the region at the rear of the spinal cord that receives inputs from receptors in the skin. find the nth term in the following sequesnce: 1, 3, 9, 27 How did religion play a role in the oppression of natives by the spanish?. 1. What was the purpose of President Clinton's interventions in Bosnia in 1994 and Serbia in 1999?a. to prevent human rights abusesb.to protect U.S. trade intereststo monitor democratic electionsd. to defend U.S. military bases2. Which of the following was an effect of the North American Free Trade Agreement (NAFTA)?a. the creation of high-wage service jobsb. stronger enforcement of environmental lawsc. the loss of U.S. manufacturing jobsd. weaker investment in transportation infrastructure3. How did President Bush's administration respond to the September 11 attacks?by passing the USA PATRIOT Act to search, monitor, and detain suspected terroristsb. by creating the Department of Homeland Security to coordinate different agencies in combatingterrorismc. by creating the Transportation Security Administration (TSA) and putting airport security underthe responsibility of the federal governmentd.All of the above. Please write me too well written paragraphs on why living at home is better then living in a apartment and what the benefits of living at home would be An entrepreneur is considering the purchase of a coin-operated laundry. The current owner claims that over the past 5 years, the mean daily revenue was $6750 with a population standard deviation of $265. A sample of randomly selected 30 days reveals a daily mean revenue of $6280. If you were to test the null hypothesis that the daily mean revenue was $6750, which test would you use?. 3. Sarah has a goal to save $81.84 for a new ganIf she has 12 weeks to save the money, how much does she needto save each week? PLEASE HELP WITH THIS Question 2 5 ptsapoplectic : enraged : calm :______ lazy violent composedsleepy True or False? Popular sites are always mean accurate HELP!!! GIVING BRAINLIEST AND MANY POINTS!!! what am i suppost to do with the remainder when dividing fractions scients is a combination of three things what are they? In the debate among members of the French Royal Academy regarding the relative superiority of color or form, which side did Watteau favor Select all that apply.Which of the following logically support the topic sentence belew?Organic produce is worth the extra cost.O Organic farming is sustainable and better for the environment.O Big corporations have undermined the benefits of organic farming.Organic produce does not contain pesticides and chemical fertilizers that might be bad for you,O Organic farming requires a different kind of labor that makes for better social relations.O In addition to buying organic produce, we should also use organic eggs. Sue ran 7 miles more than Jill last week. Sue ran 11 miles. Which equation will tell you how many miles Jill ran?A)x + 7 = 11B)X-7 = 119C)x + 7 = -11D)X - 7 = -1 kira's penny bank is 1/6 full. after she adds 200 pennies, it is 1/2 full. how many pennies can kiras bank hold?